Large Binocular Telescope sees first light

Nov. 1, 2005
November 1, 2005, Mount Graham, AZ--The two mirrors of the Large Binocular Telescope (LBT) have produced their first scientific images of space. Led by the Max Planck Institute for Astronomy (Heidelberg, Germany), five German institutes participated, garnering a total of 25 percent of the observation time. Among them were the Max Planck Institutes for Astronomy, Extraterrestrial Physics in Garching, and for Radio Astronomy in Bonn.

November 1, 2005, Mount Graham, AZ--The two mirrors of the Large Binocular Telescope (LBT) have produced their first scientific images of space. Led by the Max Planck Institute for Astronomy (Heidelberg, Germany), five German institutes participated, garnering a total of 25 percent of the observation time. Among them were the Max Planck Institutes for Astronomy, Extraterrestrial Physics in Garching, and for Radio Astronomy in Bonn.

The Large Binocular Telescope, positioned on the 3190-meter high Mount Graham in Arizona, is one of the most prominent scientific-technical projects in modern astronomical research. Its name describes it well: it has two giant mirrors, each of them with a diameter of 8.4 m. They are mounted onto the same surface, and focused, like field glasses, at the same time on distant space objects. The surface of the mirrors is polished with extreme precision, down to one 20 millionth of a mm. If an LBT mirror were enlarged to the size of Lake Constance in the Alps--just slightly larger than the area of New York City--the ‛waves' on the lake would be only one-fifth of a mm high. In spite of their size, each of the two mirrors weighs 16 tons. A classical telescope, on the other hand, at the dimensions of the LBT, would have thick mirrors weighing some 100 tons. It would be impossible to construct such a large classical telescope.

By combining the optical paths of the two individual mirrors, the LBT collects as much light as a telescope whose mirrors have a diameter of 11.8 meters. This is a factor of 24 larger than the 2.4-m mirrors of the Hubble Space Telescope. Even more importantly, the LBT has the resolution of a 22.8-m telescope, because it uses the most modern adaptive optics, superimposing pictures with an interferometric procedure. The astronomers are thus able to compensate for the blurring caused by air turbulence, and see into the universe much more clearly than Hubble.

LBT is a joint American-German-Italian project.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!