First diamond laser built using Raman technique portends future high-power laser sources

Dec. 11, 2008
A team of physicists at Macquarie University (Sydney, Australia) has created "the first diamond laser using a technique based on the Raman effect." The achievement demonstrates an effective method for generating powerful laser beams, and shows that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

A team of physicists at Macquarie University (Sydney, Australia) has created what it calls "the first diamond laser using a technique based on the Raman effect." The achievement has demonstrated a new, more effective method for generating a powerful beam, and has shown that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

"This research could pave the way for new laser sources over a wide range of wavelengths and with very high power levels," said research leader Richard Mildren. "Using natural diamonds in this type of work is problematic -- the quality is not consistent and, as everybody knows, they're very expensive," he noted.

He explains that CVD diamond production has improved substantially in the past two to three years, and now, "a one centimetre-long crystal can be purchased for around $2000."

Mildren says, "The next step is to see how effectively CVD diamond lasers operate at even higher power levels. We'd also like to investigate the potential for diamond Raman lasers in the ultraviolet and long wave infrared regions where other materials can't operate."
Mildren said there is potential for diamond Raman lasers to be used in everything from terahertz threat detection such as body-scanning devices at airports; ultra high precision laser surgery; and defense applications including directed energy weapons.

For more information see Macquarie University's website.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!