Strain-adjusted LED produces phosphor-free white light

Jan. 2, 2009
Researchers at Peking University (Beijing, China) are crafting phosphor-free gallium nitride based white LEDs that rely on a "strain adjusting" indium gallium arsenide (InGaN) interlayer to produce blue and yellow luminescence.

Researchers at Peking University (Beijing, China) are crafting phosphor-free gallium nitride based white LEDs that rely on a "strain adjusting" indium gallium arsenide (InGaN) interlayer to produce blue and yellow luminescence. While this isn't the first time such an LED has been made, the researchers have carefully studied the origin of the luminescence, determining that it arises from the high-indium core (yellow emission) and adjacent indium-depleted regions (blue emission) in inverted pyramidal pits on the LED's surface.1 The pits are formed when the strain-relaxation process induces dislocations in the InGaN interlayer.

The properties of the white LED were studied by measuring room-temperature electroluminescence (EL) and cathodoluminescence spectra, while high-resolution x-ray diffraction and scanning-electron microscopy were used to help understand the relationship between the device's structure and its optical properties.

When the injection current is low, the LED emits mainly yellow (560 nm) light. As the injection current increases, the blue (466 nm) portion of the emission increases, and the yellow portion eventually saturates. For example, at a current of 50 mA, the LED is yellow, but when the current is raised to 150 mA, the EL spectrum corresponds to a white-light source with a color temperature of 4972 K and CIE chromaticity-diagram coordinates of 0.30, 0.37.

Ordinary white LEDs produce their light by a combination of blue LED emission and downconverted yellow light emanating from a phosphor, which is stimulated by a portion of the blue LED light. If a strain-adjusted (non-phosphor-containing) LED could be made to be as efficient as an ordinary white LED, it could very well become the new standard for white LEDs. The reason? It would likely last longer, as there is no phosphor to degrade.


1. H. Fang et al., Applied Physics Letters, 93, 261117 (published online December 31, 2008).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!