MEMS-based hyperspectral imager uses a single photodetector

May 1, 2009
Most hyperspectral imagers use a linear or two-dimensional array of photodetectors, with the exception of certain pushbroom scanning mechanisms that use a fixed diffraction grating with two mirrors—one that scans in the spectral domain, the other in the spatial domain.

Most hyperspectral imagers use a linear or two-dimensional array of photodetectors, with the exception of certain pushbroom mechanisms that use a fixed diffraction grating with two mirrors—one that scans in the spectral domain, the other in the spatial domain. But unlike this exception, which requires the mirrors to rotate out of the plane at high speed and potentially induce aberrations, researchers at the National University of Singapore and the Institute of Microelectronics (both in Singapore) have developed a single-detector hyperspectral imager with a microelectromechanical systems (MEMS) grating that moves in-plane with respect to its surface, significantly reducing nonrigid-body deformations and aberrations and enabling increased image-acquisition rates.

Symmetrical flexure suspensions attach two ends of a circular MEMS diffraction grating to electrostatic comb-drive resonators that cause in-plane rotation of the grating about its geometrical center, which changes the orientation of the grating lines and causes a diffracted laser beam to scan. For hyperspectral imaging, optics direct light from a scene or a sample to bounce off the MEMS grating and pass through a pinhole to a single photodetector that stores the narrowband information. In addition to its mechanical robustness, its small size makes it convenient for portable hyperspectral applications. Contact Guangya Zhou at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!