Superhydrophobic surface improves solar cells in two ways

May 1, 2009
The absorption efficiency of solar cells can be improved through surface patterning (see www.laserfocusworld.com/articles/346272) and antireflective coatings (see www.laserfocusworld.com/articles/344614), among other methods in development.

The absorption efficiency of solar cells can be improved through surface patterning and antireflective coatings, among other methods in development. Adding to this list is a superhydrophobic surface developed by researchers at the Georgia Institute of Technology (Atlanta, GA) that both naturally sheds water (washing away dirt and dust) and better traps light in its three-dimensional surface structure, improving collection efficiency.

Click here to enlarge image

The superhydrophobic surface mimics the lotus leaf and consists of both micro- and nanoscale structures with high contact angles and low hysteresis that encourage water to bead up and run off. Surface preparation begins with a potassium hydroxide solution etch that preferentially removes silicon along crystalline planes, creating micron-scale pyramidal structures. Nanometer-scale gold particles are then applied and used as the catalyst for a metal-assisted etching process to produce nanometer-scale features that reduce overall surface reflection to less than 5%. Although robustness of the surface needs to be improved and large-scale manufacturing viability needs to be explored for solar cells, the treatment could also be used for antibacterial coatings on medical equipment and improved microfluidic devices. Contact C. P. Wong at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!