Cheaper materials are key to lower-cost solar cells

July 1, 2009
A study from the Energy and Resources Group and the Department of Chemistry at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (Berkeley, CA) describes several alternatives to silicon that could dramatically increase large-scale deployment of solar photovoltaics.

A study from the Energy and Resources Group and the Department of Chemistry at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (Berkeley, CA) describes several alternatives to silicon that could dramatically increase large-scale deployment of solar photovoltaics.

Although less costly than silicon and easier to produce, thin-film technologies would rapidly deplete natural resources if scaled to the terawatt-levels of annual manufacturing production required, due to their low conversion efficiencies. Interested in finding alternatives, the Berkeley study looked at 23 semiconducting materials and found nine that are significantly lower in cost than crystalline silicon, including iron pyrite, copper sulfide, and copper oxide. Iron pyrite (FeS2) was found to be several orders of magnitude better than any alternative when considering cost and abundance. Despite a power-conversion efficiency of only 4% (compared to around 19% for crystalline silicon), iron pyrite’s ultralow material cost—$0.03/kg versus $1.70/kg for silicon—would more than offset efficiency losses in a large-scale solar-cell production scenario. Contact Daniel Kammen at [email protected] or http://rael.berkeley.edu.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!