Laser technology generates bias-free, true random numbers

Aug. 1, 2009
Although the generation of true random numbers is crucial in modern digital electronic information systems for statistical sampling, cryptography, and other applications, the ability to generate these random numbers truly unpredictably and irreproducibly is limited in current common generation schemes such as extraction of a random bit from the random time intervals between the emission of photons from semiconductors.

Although the generation of true random numbers is crucial in modern digital electronic information systems for statistical sampling, cryptography, and other applications, the ability to generate these random numbers truly unpredictably and irreproducibly is limited in current common generation schemes such as extraction of a random bit from the random time intervals between the emission of photons from semiconductors. In these and other complex schemes, timing precision is a limitation to the random bit generation rate.

Researchers at Peking University (Beijing, China) have overcome this limitation with the development of a simple and compact method for true random-number generation based on photon-number detection of a weak laser pulse.

With equal probabilities for the bits of ones and zeroes, bias-free from the variabilities of the device and the environment, capable of generating random numbers at high speed, and only limited by the repetition rate of the single-photon detector used in the setup, the new technique essentially consists of an attenuated output from a pulsed distributed-feedback diode laser (300 ps pulses at 1550 nm) that is detected by an indium gallium arsenide photodetector operating in Geiger mode. A von Neumann correction method (with no post-processing required) is used for the detection scheme, which looks at the random bits generated from successive pairs of photon detections. Contact Hong Guo at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!