First JWST primary-mirror segment is successfully cryo-polished

March 3, 2010
The James Webb Space Telescope (JWST) reached a mission-readiness landmark yesterday.

Greenbelt, MD--The James Webb Space Telescope (JWST) reached a mission-readiness landmark yesterday, when its first primary-mirror segment was cryo-polished to its required prescription as measured at operational cryogenic temperatures. This achievement sets the stage for a successful polishing process for the remaining 18 flight mirror segments. (When in space, the cold part of the JWST will operate at a temperature of 35 K; the telescope will be a showcase of leading-edge technologies.)

Northrop Grumman Corporation is leading the JWST design-and-development effort for NASA's Goddard Space Flight Center, Greenbelt, Md. "Many predicted it would take us multiple iterations to successfully polish these mirror segments to achieve the correct optical prescription at the telescope's operating temperatures, but we did it on our first try," said Scott Willoughby, JWST program manager for Northrop Grumman Aerospace Systems. "All our budgets and schedules are based on this and it's a confirmation of the basic plan we proposed ten years ago."

Cryogenic polishing, or cryo-null figuring, ensures that when the mirror reaches its operating temperature, its shape will conform to the proper optical prescription required for it to accurately image stars and galaxies in the IR. The engineering-development unit mirror, which will be used as a flight spare, was cryotested in the X-Ray and Cryogenic Facility (XRCF) at NASA's Marshall Space Flight Center (Huntsville, AL). More testing is planned as the telescope is built up from the segments.

Testing with more than one set of null optics
Principal optical contractor Ball Aerospace will conduct separate verification tests using different computer-generated-hologram (CGH) null tools. NASA Goddard will use its own testing equipment and measurement methods in its clean room; testing at Johnson Space Flight Center will use a reflective null tool manufactured by optical integration and test partner ITT; and polishing partner Tinsley Labs will make measurements using their own independent method of calibrating their CGH null tools.

The JWST is currently expected to launch in 2014.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!