PC waveguide switches on and off magnetically

March 1, 2010
In a photonic-crystal (PC) waveguide switch developed by scientists at Michigan Technological University, Integrated Photonics, and the Russian Academy of Sciences, the photonic bandgap is controlled magnetically, allowing switching via an external electromagnet.

In a photonic-crystal (PC) waveguide switch developed by scientists at Michigan Technological University (Houghton, MI), Integrated Photonics (Hillsborough, NJ), and the Russian Academy of Sciences (Moscow, Russia), the photonic bandgap is controlled magnetically, allowing switching via an external electromagnet. The PC material contains bismuth, gadolinium, lutetium, iron, and oxygen and is grown on a gadolinium-gallium-garnet substrate.

The waveguide is 1.2 mm long, 2.75 µm thick, and about 5 µm wide with a 200 µm long one-dimensional PC section that has a 343.4 nm grating period and a 700 nm grating depth. Light with a 1550 nm wavelength is coupled into a 900 µm long feeder section connected to the waveguide. Although the waveguide is multimode, about 95% of the input light is coupled into the fundamental mode. The small stress birefringence in the feeder is largely offset by its geometrical birefringence, enabling TE-TM coupling for the fundamental mode (and which is suppressed for higher modes). Switching the magnetization direction rotates the optical polarization, switching the light off or on. Insertion loss for the device is 5.4 dB; the on-to-off transmission ratio is about 9. Contact Miguel Levy at mlevy.mtu.edu.

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!