LED device could advance photodynamic therapy for skin cancer

Oct. 22, 2010
Irvine, CA--Scientists at the University of California, Irvine (UC Irvine) believe that skin cancer can be treated with light.

Irvine, CA--Can skin cancer be treated with light? Scientists at the University of California, Irvine (UC Irvine) believe so. They're exploring new ways to image cancerous lesions using light-emitting diodes (LEDs) that might advance a light-based technique for treating cancer called photodynamic therapy (PDT)--work that they will describe at the Optical Society's (OSA) 94th annual meeting, Frontiers in Optics (FiO) 2010 (www.frontiersinoptics.com) at the Rochester Riverside Convention Center in Rochester, NY from October 24-28.

In PDT, photosensitizing chemicals that absorb light are injected into a tumor, which is then exposed to light. The chemicals generate oxygen radicals from the light energy, destroying the cancer cells. PDT is currently approved by the U.S. Food and Drug Administration (FDA) for the treatment of esophageal and lung cancer.

Rolf Saager, who works in the lab of Anthony Durkin at the Beckman Laser Institute at UC Irvine in collaboration with Kristen Kelly, M.D., and Modulated Imaging, believes that PDT could also be used to treat skin cancer. But one obstacle to this application is the lack of a detailed imaging technique to target and monitor the effectiveness of PDT.

Exploiting a technique known as spatial frequency domain imaging, the team has designed a new device with an array of five different colors of LEDs that illuminates skin with distinct intensity patterns. These patterns can change depending on the structure of the tissue and the pigments in the skin. With appropriate models of light propagation, the resulting images reveal the biochemistry of the tissue. "Through this imaging modality, it is now possible to assess how the therapeutic light will travel throughout the affected tissue, quantify the drug present within the lesion and monitor its efficacy during treatment," says Saager.

To evaluate this spatial frequency domain imaging system, the scientists imaged a small population of skin cancers prior to treatment to characterize the variability among subjects and within the lesions themselves. The process took 5-10 seconds and produced images with a resolution of 30 microns, revealing spatially resolved maps of the optical properties of the lesions, tissue oxygenation and quantitative distribution of the photosensitizing drug.

The talk, "A LED Based Spatial Frequency Domain Imaging System for Optimization of Photodynamic Therapy of Basal Cell Carcinoma (BCC)," will be presented at FiO at 2 p.m. Tuesday, October 26.

SOURCE: OSA; www.frontiersinoptics.com/MediaCenter/ConferenceNews/2010/TreatingCancerWithLight.aspx

Posted by:Gail Overton

Subscribe now to Laser Focus World magazine; It’s free!

Follow us on Twitter

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!