Light-activated liquid-crystal membrane allows selective transmission of gases

Oct. 1, 2010
Researchers at the University of Rochester's Laboratory for Laser Energetics (Rochester, NY) have developed a unique membrane that blocks gas from flowing through it when one color of light is shone on its surface, and permits gas to flow through when another color of light is applied.

Researchers at the University of Rochester's Laboratory for Laser Energetics (Rochester, NY) have developed a unique membrane that blocks gas from flowing through it when one color of light is shone on its surface, and permits gas to flow through when another color of light is applied. The membrane consists of a piece of hard plastic riddled with 0.01 mm diameter holes (fabricated via neutron-beam milling) filled with dye-doped liquid crystals through capillary action. When purple light with a wavelength greater than 420 nm illuminates the surface of the membrane, the dye molecules straighten out and the liquid-crystal structures are oriented along the center axis of the cylindrical holes, allowing gas to easily flow through. But when UV light illuminates the surface, the dye molecules bend into a banana shape and the liquid crystals scatter into random orientations, causing a substantial dip in the permeability of the membrane.

The reversible membrane, which follows a simple sorption-permeation model, switches within 5 s for incident intensity values of only 2 mW/cm2. The light-activated membrane can be operated remotely (unlike conventional heat or electricity activated membranes) without causing damage to the membrane, eliminating the potential for gas ignition. Contact Kenneth Marshall at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!