Light-activated liquid-crystal membrane allows selective transmission of gases

Oct. 1, 2010
Researchers at the University of Rochester's Laboratory for Laser Energetics (Rochester, NY) have developed a unique membrane that blocks gas from flowing through it when one color of light is shone on its surface, and permits gas to flow through when another color of light is applied.

Researchers at the University of Rochester's Laboratory for Laser Energetics (Rochester, NY) have developed a unique membrane that blocks gas from flowing through it when one color of light is shone on its surface, and permits gas to flow through when another color of light is applied. The membrane consists of a piece of hard plastic riddled with 0.01 mm diameter holes (fabricated via neutron-beam milling) filled with dye-doped liquid crystals through capillary action. When purple light with a wavelength greater than 420 nm illuminates the surface of the membrane, the dye molecules straighten out and the liquid-crystal structures are oriented along the center axis of the cylindrical holes, allowing gas to easily flow through. But when UV light illuminates the surface, the dye molecules bend into a banana shape and the liquid crystals scatter into random orientations, causing a substantial dip in the permeability of the membrane.

The reversible membrane, which follows a simple sorption-permeation model, switches within 5 s for incident intensity values of only 2 mW/cm2. The light-activated membrane can be operated remotely (unlike conventional heat or electricity activated membranes) without causing damage to the membrane, eliminating the potential for gas ignition. Contact Kenneth Marshall at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!