SLAC X-rays see mutations that trigger calcium-related disease

Nov. 5, 2010
Menlo Park, CA-- Using intense X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC, researchers determined the detailed structure of a protein associated with calcium-related disease.

Menlo Park, CA--Using intense X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy's SLAC National Accelerator Laboratory, researchers have determined the detailed structure of a key part of the ryanodine receptor, a protein associated with calcium-related disease. Their results, which combine data from SSRL and the Canadian Light Source, pinpoint the locations of more than 50 mutations that cluster in disease "hotspots" along the receptor. The protein understanding could play a role in developing therapies for such calcium-related problems as heart disease.

Calcium regulates many critical processes within the body, including muscle contraction, the heartbeat, and the release of hormones. But too much calcium can be a bad thing. In excess, it can lead to a host of diseases, such as severe muscle weakness, a fatal reaction to anesthesia, or sudden cardiac death.

"Until now, no one could tell where these disease mutations were located or what they were doing," said principal investigator Filip Van Petegem of the University of British Columbia in Vancouver. The ryanodine receptor controls the release of calcium ions from a storehouse within skeletal-muscle and heart-muscle cells as needed to perform critical functions. Previous studies at lower resolution indicated that mutations cluster in three regions along the receptor, but without more detailed information it remained unclear exactly how they contributed to disease.

In a study published this week in Nature, Van Petegem and his group describe the structure of one of these hotspots in extremely fine detail and predict how the mutations might cause the receptor to malfunction and release calcium too soon. "These mutations most likely cause the same disease effects, but a severe mutation leads to stronger symptoms, and doesn't require as big of a stimulus to induce disease," Van Petegem said.

A premature release of calcium produces extra electrical signals within the cells. In skeletal muscle, this can lead to fatal rises in body temperature under certain anesthetics, or the failure of major muscles. In cardiac muscle it can trigger an arrhythmia, resulting in sudden cardiac death. While it is difficult to determine the exact number of people with these mutations, it is estimated that as many as one in 10,000 may be at risk for disease.

"Thanks to the technological capabilities at SSRL, we were able to rapidly screen hundreds of crystallized samples of this receptor protein to find ones with the best quality, giving the best structure. This study is a good first step toward designing new molecules that could be used as a drug," Van Petegem said. "These mutations could be a very promising therapeutic target for treating heart disease."

SOURCE: SLAC; http://home.slac.stanford.edu/pressreleases/2010/20101104.htm

Subscribe now to Laser Focus World magazine; It’s free!

Follow us on Twitter

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!