New SRS microscopy technique tracks molecules at video rates

Dec. 27, 2010
Cambridge, MA--A new type of biomedical imaging based on stimulated Raman scattering (SRS) microscopy from scientists at Harvard University is so fast it can capture video of blood cells squeezing through capillaries.

Cambridge, MA--A novel type of biomedical imaging, made possible by new advances in stimulated Raman scattering (SRS) microscopy from scientists at Harvard University, is so fast and sensitive it can capture video of blood cells squeezing through capillaries. Researchers led by Harvard's Brian G. Saar, Christian W. Freudiger, and X. Sunney Xie describe the work this week (Dec. 2) in the journal Science.

For the first time, SRS microscopy makes possible label-free chemical movies, with streaming footage at the subcellular level, catching video of proteins, lipids, and water within cells. Xie says SRS microscopy could aid, and speed, surgery to remove tumors and other lesions. Surgeons must now send excised samples for histological analysisa process that takes about 20 minuteswhile a patient waits on the operating table. SRS microscopy provides equivalent insights through real-time scanning.

Xie’s team has already used SRS microscopy to track migration of medications in skin, shedding new light on the absorption of topical drugs. In conjunction with endoscopy, the technique can also view three-dimensional sections of tissue, layer by layer. "Previous SRS microscopy captured only about one image per minute, far too slow for use in live animals or humans," Xie says. "We were able to speed the collection of data by more than three orders of magnitude, attaining video-rate imaging."

Because SRS microscopy works by detecting the intrinsic vibrations in chemical bonds between atoms, it doesn’t require intrusive fluorescent labeling. An optical technique, it complements MRI, whose depth of penetration is better suited to imaging organs and other large objects deep within the body.

The current work greatly improves detection of signalsbackscattered by tissues in the bodyby rearranging photodetectors to surround a small aperture through which a beam of light is directed at the tissue being examined. Using this approach, the scientists were able to collect and analyze almost 30% of the laser light directed at a biological sample, a more than 30-fold increase over previous SRS microscopy.

Scientists currently use a variety of techniques to view biomolecules, but most have significant limitations that are sidestepped by SRS microscopy. Labeling with green fluorescent protein (GFP) provides sharp images, but the bulky protein can perturb delicate biological pathways, overwhelming smaller biomolecules. Conventional infrared (IR) microscopy has low spatial resolution and requires desiccated samples, while spontaneous Raman microscopy requires high laser power and long integration times, limiting use in live specimens. Coherent anti-Stokes Raman scattering (CARS) microscopy, pioneered by Xie’s own group, lacks the contrast to image most molecules beyond lipids.

SOURCE: Harvard University; http://news.harvard.edu/gazette/story/2010/12/tracking-molecules-at-video-rate/

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!