Bridger Photonics selects Boston Micromachines to help assess deformable mirror technology

Jan. 3, 2011
Cambridge, MA--Boston Micromachines Corporation (BMC) signed a consulting agreement with Bridger Photonics to quantitatively assess a new MEMS membrane deformable mirror design.

Cambridge, MA--Boston Micromachines Corporation (BMC), a provider of microelectromechanical systems (MEMS)-based deformable mirror (DM) products for adaptive optics systems, signed a consulting agreement with Bridger Photonics (Bozeman, MT) to quantitatively assess a new MEMS membrane deformable mirror design using Boston Micromachines' facilities.

"We recognized that Boston Micromachines is a world leader in deformable MEMS membranes. The two companies' technologies complement one another very well, so the fit is natural," said Peter Roos, president and CEO at Bridger Photonics. "We are excited to capitalize on BMC's proven expertise and knowledge in the field of deformable mirrors."

Bridger Photonics was awarded a Small Business Technology Transfer (STTR) grant from the National Science Foundation to develop a commercial prototype of an aberration compensated focus control device. This device, based on MEMS technology, will allow the user to deflect a deformable membrane mirror in a controlled manner in order to select a desired focal length. The device also features active control of low-order aberrations. This technology will enable the next generation of biomedical imaging devices for microscopy applications by enabling focus control and aberration correction in a simple, compact and low-cost sensor.

"Progress in deformable mirror technology has inspired innovative researchers to make advances in fields such as astronomy, microscopy, retinal imaging, and laser communication," said Paul Bierden, president and CEO at Boston Micromachines. "We are pleased to provide our extensive DM technology knowledge to Bridger Photonics to support its effort to expand the role of MEMS DM technology in wavefront correction for scientific advancement."

SOURCE: Boston Micromachines; www.bostonmicromachines.com/news_press_bridger.htm

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!