UV-transparent optical coating improves CMOS image sensors

Feb. 25, 2011
Duisburg, Germany--Image sensors as used in cell phones do not receive light of different wavelengths with equal efficiency.

Duisburg, Germany--Image sensors as used in cell phones do not receive light of different wavelengths with equal efficiency. This is because of their protective optical coating, which prevents UV light from passing through. As a result, CMOS chips have not been previously been suitable for some uses in spectroscopy. Now, a new production process developed at Fraunhofer Institute for Microelectronic Circuits and Systems IMS makes the coating more spectrally evenand the sensors suitable for special applications.

Such sensors have been used as standard in multimedia electronics for a long time, and are now making rapid inroads in high-performance applications: CMOS image sensors are no longer only used in cell phones and digital cameras. The automotive industry, for instance, has discovered the potential of optical semiconductor chips and is increasingly using them in driver-assistance systemsfrom parking aids and road-lane detection to blind-spot warning devices. In special applications, however, the photosensors have to cope with difficult operating conditions, for example high temperatures and moisture.

Improved protective coating

For this reason, CMOS devices are covered with a silicon nitride coating. This chemical compound forms hard layers which protect the sensor from mechanical influences and the penetration of moisture and other impurities. The protective coating is applied to the sensor in the final stage of CMOS semiconductor production. The process is called passivation, and is an industry requirement. Unfortunately, up to now this passivation has entailed a problem: the silicon nitride coating limits the range of optical applications because it is impermeable to light in the UV and blue spectral range. CMOS sensors for high-performance applications, used in special cameras are therefore partially color-blind.

Scientists at Fraunhofer IMS say they have have found a solution to this problem. "We've developed a new process step that allows us to produce a protective coating with the same properties but which is permeable to blue and UV light," says Werner Brockherde, one of the scientists. The trick is to increase the proportion of nitrogen in the coating. "This reduces the absorption of shortwave light," notes Brockherde.

The new coating material absorbs less light of an energy higher than blue light, which means the sensor becomes more sensitive at the blue and UV range. "This makes CMOS image sensors suitable for use in wavelength ranges down to 200 nm," states Brockherde. "With standard passivation the limit was about 450 nm." To change the structure of the silicon nitride for the coating, the Fraunhofer research scientists had to fine-tune the deposition parameters such as pressure and temperature.

With this process development, the experts have expanded the range of applications for CMOS image technology. This could aid UV spectroscopic methods, which are used in laboratories around the world, significantly improving their accuracy. Likewise, CMOS image sensors stand to take up a new role in professional microscopy, for example in fluorescence microscopes, providing scientists with images of greater detail.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!