Nanodiamond optically tracked in human cells could aid drug discovery, understanding of cells' inner behavior

May 28, 2011
A quantum nanodiamond, containing a nitrogen-vacancy center, has been tracked inside a living human cell.

Melbourne, Australia--A quantum nanodiamond, containing a nitrogen-vacancy center, has been tracked inside a living human cell. The location and orientation of the optically and nanomagnetometrically detected nanodiamond was tracked to 1° angular precision; its quantum coherence was tracked through periods of more than ten hours at a time. Such precision can be a new path to the development of new drugs, as well as understanding the drugs' interactions at the nanoscale.

The technique, pioneered by physicists at the University of Melbourne, is capable of detecting biological processes at a molecular level, such as the regulation of chemicals in and out of the cell. The paper has been published in the journal Nature Nanotechnology.

More than one nitrogen-vacancy center could be identified and tracked simultaneously. In addition, the rate of decoherence (as the vacancy loses its quantum state over time) due to processes in the cell could provide interesting new information about the processes inside the cell.

Quantum physicist and PhD student Liam McGuinness said that monitoring the atomic sensor in a living cell was a significant achievement. "Previously, these atomic-level quantum measurements could only be achieved under carefully controlled conditions of a physics lab," he said.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!