Nuclear photonics: Gamma rays find concealed nuclear threats

May 3, 2011
A new source of gamma rays produced by the interaction of lower-energy laser photons with high-energy electrons will allow officials to search for hidden reactor fuel/nuclear bomb material.

Washington, DC--A new source of gamma rays produced by the interaction of lower-energy laser photons with high-energy electrons will allow officials to search for hidden reactor fuel/nuclear bomb material.

These gamma rays, called MEGa-rays (for mono-energetic gamma rays), which are incoherent, can be tuned to a specific energy so that they predominantly interact with only one kind of material. A beam of MEGa-rays, for example, might be absorbed by the nuclear fuel uranium-235 while passing through other substances including the more common (but less dangerous) isotope uranium-238. That sort of precision opens the door to “nuclear photonics,” the study of nuclei with light. “It is kind of like tunable laser absorption spectroscopy but with gamma-rays,” says Chris Barty of Lawrence Livermore National Laboratory, who presented on MEGa-rays today at this year's Conference on Lasers and Electro Optics (CLEO 2011, May 1-6, Baltimore, MD) .

In the last couple of years, MEGa-ray prototypes have identified elements like lithium and lead hidden behind metal barriers. The next generation of MEGa-ray machines, which should come on-line in a couple of years, will be a million times brighter, allowing them to see through thick materials to locate specific targets in less than a second.

Barty presented several MEGa-ray applications in use today and described the attributes of next-generation devices. Work is under way on a MEGa-ray technology that could be placed on a truck trailer and carried out into the field to check containers suspected of having bomb material in them. At nuclear reactors, MEGa-rays could be used to quickly identify how enriched a spent fuel rod is in uranium-235. They could also examine nuclear-waste containers to assess their contents without ever opening them up. MEGa-ray technology might also be used in medicine to track drugs that carry specific isotope markers.

The presentation was entitled “Mono-Energetic Gamma-rays (MEGa-rays) and the Dawn of Nuclear Photonics,” by Chris Barty.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!