Optical Surfaces delivers ultraprecise Zerodur parabola (fabricated deep underground) for physics research

June 30, 2011
An ultraprecise parabolic mirror created by Optical Surfaces and designed for use with a petawatt laser has been delivered to the Central Laser Facility at the STFC Rutherford Appleton Laboratory (Didcot, England).

Surrey, England--An ultraprecise parabolic mirror created by Optical Surfaces and designed for use with a petawatt laser has been delivered to the Central Laser Facility at the STFC Rutherford Appleton Laboratory (Didcot, England). The 1.75-mm-diameter on-axis parabola has an f number of 0.8, a high asphericity (0.4 mm), a peak-to-valley surface accuracy of better than lambda/10, and smoothness of 20/10 scratch/dig. Made of Zerodur, the parabola was coated with a high-performance UV-silver coating that has a reflectivity greater than 98% throughout the 350-to-800-nm wavelength range.

Fabricated deep underground

An interesting fact about Optical Surfaces: its manufacturing workshops and test facilities (which are ISO 9001-2000 approved) are deep underground in a series of tunnels excavated in solid chalk to minimize temperature variations and vibration.

The Central Laser Facility (CLF) provides support for experimentation in physics, chemistry, and biologyfor example, accelerating subatomic particles to high energies, probing chemical reactions on ultrashort timescales, and studying biochemical and biophysical processes.

The parabola made by Optical Surfaces will be used to focus the beam-line energy to a maximum focused intensity of around 1022 Wcm-2.

"Our primary aim is the production of the highest intensity ever produced with a laser," said Peta Foster, a scientist with the CLF Astra Gemini laser. "This optic was extremely demanding in specification and we are delighted to take receipt of it. The focus of this optic should deliver a 5x increase in laser intensity that we hope will enable the study of an exciting new regime in laser-matter interactions."

For more info, see www.optisurf.com.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!