Phase-sensitive optical amplifier with 1 dB noise increases distance between repeaters

June 22, 2011
Researchers at Chalmers University of Technology have demonstrated a phase-sensitive optical amplifier that can amplify light with a link noise-figure improvement of almost 6 dB compared to conventional erbium-doped fiber-amplifier (EDFA)-based links.

Gothenburg, Sweden--Researchers at Chalmers University of Technology have demonstrated a phase-sensitive optical amplifier that can amplify light with a link noise-figure improvement of almost 6 dB compared to conventional erbium-doped fiber-amplifier (EDFA)-based links.1 The amplifier enables a reach increase for optical-fiber signals from, for example, 1000 to 4000 km.

By using a phase-sensitive fiber-optic parametric amplifier (PSA), the noise figure was reduced to 1 dB; in contrast, in conventional EDFAs the noise figure is 3 dB at best, resulting in loss of signal integrity. This represents a real advance because it is implemented in a practical way, making it potentially attractive in high-capacity optical-communication systems.

"The amplifier is compatible with any modulation format, with traditional laser transmitters, and can be very broadband, making it compatible with many lasers at different wavelengths," says Peter Andrekson, who developed the low-noise amplifier together with his research group.

Nonlinear optical device

The group has taken advantage of the fact that the refractive index of glass is not constant, but dependent on light intensity in the fiber (in other words, it is optically nonlinear). The new amplifier has theoretical minimum of 0 dB, meaning no noise is added in the amplification process.

"The technology is generic, and scalable to other wavelengths like visible or infrared light, which makes it attractive in areas such as measurements, spectroscopy, laser radar technology and any applications where detection of very weak levels of light is essential," says Andrekson.

REFERENCE:

1. Z. Tong et al., Nature Photonics, Published online 05 June 2011; doi:10.1038/nphoton.2011.79.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!