Microfluidics software from Comsol enables study of rarefied gas flows

July 29, 2011
The Microfluidics Module of Multiphysics simulation software allows the study of microfluidic devices and rarefied gas flows.

The Microfluidics Module of Multiphysics simulation software allows the study of microfluidic devices and rarefied gas flows. Users can simulate such applications as compressible gas flows at low pressures, non-Newtonian flows (for example, blood flow), and laminar and creeping flows that typically occur in lab-on-a-chip systems.
Comsol
Burlington, MA
www.comsol.com

More Products

-----

PRESS RELEASE

*COMSOL Introduces the Microfluidics Module* The new Microfluidics Module from COMSOL provides an integrated environment for modeling microfluidic and rarefied flows.

BURLINGTON, MA (May 26, 2011) - COMSOL, Inc., the makers of the award winning COMSOL Multiphysics simulation software, today announced the release of the Microfluidics Module. Based on COMSOL Multiphysics, the Microfluidics Module brings easy-to-use tools for the study of microfluidic devices and rarefied gas flows. The module is designed for researchers, engineers, and experimentalists in the fields of microfluidics and vacuum science. Target application areas include lab-on-chip devices, digital microfluidics, biosensors, electrokinetic and magnetokinetic devices, inkjet technology, and vacuum system design. The module is accompanied by a suite of tutorial and industrially relevant models that serve as both instructional examples and as a foundation for future work.

"The simulation of microfluidic devices frequently requires multiple physical effects to be incorporated," comments Dr.
James Ransley, developer of the Microfluidics Module with COMSOL, Inc. "The Microfluidics Module offers a range of tools to deal with single- and multi-phase flows, transport and chemical reactions, flow in porous media, and rarefied flows. Thanks to the single user-interface in COMSOL for modeling all physics, these phenomena can be seamlessly coupled with thermal and electromagnetic effects."

Specialized Microfluidics Interfaces
--
The Microfluidics Module includes interfaces for single-phase flow.
With these interfaces users can simulate such applications as compressible gas flows at low pressures, non-Newtonian flows (for example blood flow), and laminar and creeping flows that typically occur in lab-on-a-chip systems.

A particular strength in this module is its modeling interfaces for executing two-phase flow simulations using the level set, phase field, and moving mesh methods. A variety of important fluid-interface effects are included such as surface tension forces, capillary forces, and Marangoni effects.

These flow simulation tools and the multiphysics capabilities of COMSOL make it easy to set up coupled electrokinetic and magnetohydrodynamic models for the simulation of electrophoresis, magnetophoresis, dielectrophoresis, electroosmosis, and electrowetting effects that are used alone or in combinations in both existing and emerging passive electronic display technologies for their basic function.

"We strongly believe that the Microfluidics Module will offer a very attractive set of tools for our electronic display customers," comments Dr. Ransley. Chemical diffusion for multiple dilute species is also included in the module, enabling the simulation of processes occurring in lab-on-chip devices and biosensors.

Molecular Flow
--
The Microfluidics Module comes with a new free molecular flow interface that uses the fast angular coefficient method and allows for simulations where the molecular mean free path is much longer than the geometric dimensions. Combined with COMSOL's LiveLink interfaces for industry-standard CAD packages, this tool is invaluable for vacuum system design because it enables users to run quick parametric studies of chamber geometries and pump configurations.

Tutorials
--
The Microfluidics Module is supplied with a set of fully documented industrially relevant and tutorial models:

- Capillary Rise
- Jet Instability
- Drug Delivery System
- Electrokinetic Valve
- Electroosmotic Mixer
- Electrowetting Lens
- Lamella Mixer
- Star Chip
- Viscous Catenary
- Vacuum Capillary
- Ion Implanter

"The Microfludics Module combines proven and robust multiphysics solvers with the easy-to-use user interface of COMSOL together with a range of solutions targeted at microfluidics applications,"
concludes Dr. Ransley. "The net result is a product with unprecedented ease of use which can handle arbitrarily complicated industrial and academic problems."

Microfluidics Module Highlights
--
- Model single-phase, multiphase, and porous media flows with dedicated physics interfaces.
- Multiphase flows can be simulated with Level Set, Phase field, and Moving Mesh physics interfaces.
- Incorporation of essential microfluidic effects such as electrophoresis, magnetophoresis, dielectrophoresis, electroosmosis, and electrowetting.
- Model chemical diffusion with multiple dilute species. Diffusion and reactions in one phase of a two-phase flow with the two-phase flow moving mesh interface.
- Solve stationary, highly rarefied flows, such as flows in high vacuum systems, using the free molecular flow interface.

About COMSOL
--
COMSOL Multiphysics is a software environment for the modeling and simulation of any physics-based system. A particular strength is its ability to account for multiphysics phenomena. Optional modules add
discipline-specific tools for mechanical, fluid, electromagnetics, and chemical simulations, as well as CAD interoperability.

Founded in 1986, the company has U.S. offices in Burlington, MA, Los Angeles, CA, and Palo Alto, CA. International operations have grown to include offices in the Benelux countries, Denmark, Finland, France,
Germany, India, Italy, Norway, Sweden, Switzerland, and the United Kingdom. Independent distributors of COMSOL Multiphysics are located in Australia, China, Egypt, Greece, Hungary, Israel, Japan, Korea, Malaysia, Poland, South Africa, the Czech Republic, Spain, Taiwan, and Turkey. Additional information about the company is available at www.comsol.com.

###
COMSOL and COMSOL Multiphysics are registered trademarks of COMSOL AB. Capture the Concept, COMSOL Desktop, and LiveLink are trademarks of COMSOL AB. Other product or brand names are trademarks or registered trademarks of their respective holders.

-----

Posted by Lee Mather

Follow us on Twitter

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to Laser Focus World magazine; it's free!

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!