STED microscopy images living cells in two colors

Aug. 17, 2011
New Haven, CT--Researchers at Yale University have taken the single-color superresolution technique known as stimulated emission depletion (STED) microscopy and gotten it to work with two colors on living cells.

New Haven, CT--Researchers at Yale University have taken the single-color superresolution technique known as stimulated emission depletion (STED) microscopy and gotten it to work with two colors on living cells. The technique will allow dynamic nanoscale processes to be studied by imaging differently labeled proteins at the same time.

Alternating line-by-line

In two-color STED microscopy, two sequential scans are taken using novel so-called SNAP-tags (which are mutants of a DNA-repair protein) or CLIP-tags that bind more quickly than commercially available versions, along with carefully chosen pairs of dyes. By incorporating fusion proteins, the researchers were able to improve the targeting between the protein and the dye, effectively bridging the gap. This allowed the researchers to achieve resolutions of 78 nm and 82 nm for 22 sequential two-color scans of two proteinsepidermal growth factor and epidermal growth factor receptorin living cells.

Imaging of the two colors was accomplished by alternating line-by-line between different excitation beams to get the two images. The researchers believe that using two opposing microscope objectives or total internal reflection, the STED technique can be expanded to three or more colors and to 3D imaging.

The achievement was reported in the August issue of the Optical Society's (OSA's) open-access journal Biomedical Optics Express.1

REFERENCE:

1. Patrina A. Pellett et al., Biomedical Optics Express, Vol. 2, No. 8, p. 2364, 1 August 2011.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!