STED microscopy images living cells in two colors

Aug. 17, 2011
New Haven, CT--Researchers at Yale University have taken the single-color superresolution technique known as stimulated emission depletion (STED) microscopy and gotten it to work with two colors on living cells.

New Haven, CT--Researchers at Yale University have taken the single-color superresolution technique known as stimulated emission depletion (STED) microscopy and gotten it to work with two colors on living cells. The technique will allow dynamic nanoscale processes to be studied by imaging differently labeled proteins at the same time.

Alternating line-by-line

In two-color STED microscopy, two sequential scans are taken using novel so-called SNAP-tags (which are mutants of a DNA-repair protein) or CLIP-tags that bind more quickly than commercially available versions, along with carefully chosen pairs of dyes. By incorporating fusion proteins, the researchers were able to improve the targeting between the protein and the dye, effectively bridging the gap. This allowed the researchers to achieve resolutions of 78 nm and 82 nm for 22 sequential two-color scans of two proteinsepidermal growth factor and epidermal growth factor receptorin living cells.

Imaging of the two colors was accomplished by alternating line-by-line between different excitation beams to get the two images. The researchers believe that using two opposing microscope objectives or total internal reflection, the STED technique can be expanded to three or more colors and to 3D imaging.

The achievement was reported in the August issue of the Optical Society's (OSA's) open-access journal Biomedical Optics Express.1

REFERENCE:

1. Patrina A. Pellett et al., Biomedical Optics Express, Vol. 2, No. 8, p. 2364, 1 August 2011.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!