STED microscopy images living cells in two colors

Aug. 17, 2011
New Haven, CT--Researchers at Yale University have taken the single-color superresolution technique known as stimulated emission depletion (STED) microscopy and gotten it to work with two colors on living cells.

New Haven, CT--Researchers at Yale University have taken the single-color superresolution technique known as stimulated emission depletion (STED) microscopy and gotten it to work with two colors on living cells. The technique will allow dynamic nanoscale processes to be studied by imaging differently labeled proteins at the same time.

Alternating line-by-line

In two-color STED microscopy, two sequential scans are taken using novel so-called SNAP-tags (which are mutants of a DNA-repair protein) or CLIP-tags that bind more quickly than commercially available versions, along with carefully chosen pairs of dyes. By incorporating fusion proteins, the researchers were able to improve the targeting between the protein and the dye, effectively bridging the gap. This allowed the researchers to achieve resolutions of 78 nm and 82 nm for 22 sequential two-color scans of two proteinsepidermal growth factor and epidermal growth factor receptorin living cells.

Imaging of the two colors was accomplished by alternating line-by-line between different excitation beams to get the two images. The researchers believe that using two opposing microscope objectives or total internal reflection, the STED technique can be expanded to three or more colors and to 3D imaging.

The achievement was reported in the August issue of the Optical Society's (OSA's) open-access journal Biomedical Optics Express.1

REFERENCE:

1. Patrina A. Pellett et al., Biomedical Optics Express, Vol. 2, No. 8, p. 2364, 1 August 2011.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!