Terahertz radiation affects gene expression in mouse stem cells

Sept. 13, 2011
Los Alamos, NM--A team of researchers has examined the cellular response of mesenchymal mouse stem cells exposed to terahertz radiation, finding some clear effects.

Los Alamos, NM--While the use of terahertz radiation is becoming more and more common in medical, military, security, and research applications, few studies have been done on the effects of terahertz radiation on living things. Now, a team of researchers led by Los Alamos National Laboratory has examined the cellular response of mesenchymal mouse stem cells exposed to terahertz radiation, finding some clear effects.1

Two terahertz sources were used in the experiment: a pulsed broadband source centered at 10 THz, and a continuous-wave 2.52 THz molecular-gas laser. The broadband radiation was created by directing ultrafast fundamental and second-harmonic laser light into a pressurized atomic gas, creating terahertz pulses with energies of 1 μ and durations of about 35 fs, with a repetition rate of 1 kHz.

The group determined that temperature increases from the radiation were minimal, and that heat-shock protein expression was unaffected. However, the expression of certain other genes showed clear effects from terahertz irradiation. As the researchers describe in the September issue of the Optical Society’s (OSA) open-access journal Biomedical Optics Express, the stem cells exposed to prolonged broadband terahertz radiation showed specific changes in cellular function closely related to the expression of Adiponectin, GLUT4, and PPARG genes.

The researchers believe further investigations involving a large number of genes and variation in terahertz-radiation characteristics and exposure duration are needed to generalize their findings. They also say that more direct experimental investigations of terahertz radiation’s ability to induce specific openings of the DNA double strand are needed to fully determine how terahertz radiation may work through DNA dynamics to influence cellular function.

The team worked in collaboration with the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos and Sandia National Laboratories, and with Harvard Medical School, and Beth Israel Deaconess Medical Center.


REFERENCE:

1. Boian S. Alexandrov et al., Biomedical Optics Express, Vol. 2, No. 9, 1 Sept. 2011.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Advanced Laser Processing Techniques for Surgical Robot End Effector Manufacturing

Oct. 23, 2024
For the cutting-edge manufacturers of minimally invasive surgical robots, precision laser processing is the cornerstone for crafting optimal end effectors. Learn about advancements...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!