Virtual-reflected-light microscope visualizes ancient protozoa in 3D

Sept. 21, 2011
Edmonton, Alberta, Canada--Engineers at the University of Alberta are using their VLRM prototype to study ancient protozoa and other microfossils from the bottom of the Pacific Ocean.

Edmonton, Alberta, Canada--Engineers at the University of Alberta are using their virtual-reflected-light microscopy (VLRM) prototype to study ancient protozoa and other microfossils. The VLRM is made up of a conventional optical microscope, a light source, a multi-axis translation stage, and software that extracts shape and reflectance from the images.

The fossils were found in core samples taken from the depths of the Pacific Ocean. University of Alberta engineering professor Dileepan Joseph and two graduate students, Adam Harrison and Cindy Wong, produced the 3D imaging system. To see the full effect on a computer screen, viewers wear paper-framed 3D glasses with red and cyan lenses. Viewers also control a virtual light source, which they reposition using their web browser. Wong developed the Java applet that allows simple, intuitive interaction with the images.

Joseph and his students produced 3D images of ancient fossils that were mixed in with the sand and rock of the core samples.

Species identification

Joseph says the VRLM gives geoscientists and computer programs in development much more information than simple images. The goal is to accelerate species identification of the tiny and numerous microfossils. Such identifications are used to date the rock from which the creatures are pulled. The microfossil species digitized by the VLRM prototype were found in rock known by geologists to be 60 million years old.

Geoscientists can use that kind of strata dating information in Earth-sciences research and in the search for energy resources. The University of Alberta researchers say there are multiple industrial and academic uses for their 3D microscope technology, including metallurgic studies.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!