Mobius Photonics high-rep-rate laser used in super-resolution microscopy to image living organisms

Nov. 3, 2011
Göttingen, Germany--A short-pulse, high-repetition-rate laser made by Mobius Photonics (Mountain View, CA) has been used by scientists to image intact, living, multicellular organisms via stimulated emission depletion (STED) microscopy.

Göttingen, Germany--A short-pulse, high-repetition-rate laser made by Mobius Photonics (Mountain View, CA) has been used by scientists at Max Planck Institute and Georg-August-Universität Göttingen (both in Göttingen), and Yale University (New Haven, CT) to image intact, living, multicellular organisms via stimulated emission-depletion (STED) microscopy.1

Super-resolution fluorescence STED microscopy images were taken of nematodes expressing green fluorescent protein (GFP)-fusion proteins. Next, the STED microscope captured images of living cultured cells via GTP. Images were taken within seconds of each other, allowing movies to be made.

The Mobius source was a customized G1R2 laser that was used to produce a comb spectrum of user-selectable visible wavelengths with approximately 1 ns pulse duration and a 20 MHz repetition rate. The wavelength selectivity allowed researchers to tailor the output for GFP, but could also accommodate markers requiring other wavelengths.

The researchers experimented with a variety of lasers; as noted by Mobius Vice President of Technology Manuel Leonardo, the G1R2 laser produced the smallest pixel size of the lasers tested.

Added Leonardo, "Building on our experience in super-resolution microscopy, Mobius has recently developed a new prototype laser that offers similar capabilities to our G1R2, but from an easier-to-use, longer life system. Called 'Rainbow,' the current prototype generates five discrete wavelengths. Our aim is that future Rainbow systems could produce up to seven wavelengths between 557 and 651 nm."

The prototype’s output can be at 557 nm, 571 nm, 585 nm, 600 nm, or 616 nm. The output is switchable between the individual wavelengths and has pulse energies ranging from 25 to over 50 nJ per pulse, depending on the wavelength. The result is a laser system designed to allow high-resolution image generation with fast acquisition times.

For more information, visit www.mobiusphotonics.com

REFERENCE:

1. Brian R. Rankin et al., Biophysical Journal, L63-L65 (2011) doi:10.1016/j.bpj.2011.05.020

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!