Single-mode nanocavity LED sends data at just 0.25 fJ per data bit

Nov. 16, 2011
Palo Alto, CA--A photonic-crystal nanocavity LED demonstrated by a group at Stanford University has a 10 GHz modulation speed and sends data at less than 1 fJ per data bit.

Palo Alto, CA--A photonic-crystal nanocavity LED demonstrated by a group at Stanford University has a 10 GHz modulation speed and sends data at less than 1 fJ per data bit.1 The quantum-dot (QD)-based device operates at room temperature, is single-mode, and is easily integrated into on-chip photonic circuits for data communications.

"Traditionally, engineers have thought only lasers can communicate at high data rates and ultralow power," said Gary Shambat, a doctoral candidate in electrical engineering. "Our nanophotonic, single-mode LED can perform all the same tasks as lasers, but at much lower power."

Stanford's Jelena Vuckovic, an associate professor of electrical engineering, had earlier this year produced a nanoscale laser that was similarly efficient and fast, but it operated only at temperatures below 150 K, making it impractical for commercial use.

The new LED has indium arsenide QDs that are electrically pumped. The QDs are contained in a photonic crystal that serves as a resonator, forcing single-mode behavior.

Conventional low-power laser devices require about 500 fJ of energy per bit; the new LED device requires, on average, 0.25 fJ per bit. "Our device is some 2000 times more energy efficient than best devices in use today," said Vuckovic.

Source: http://news.stanford.edu/news/2011/november/data-transmission-breakthrough-111511.html

REFERENCE:

1. Gary Shambat et al., Nature Communications 2, article number 539; doi:10.1038/ncomms1543; published 15 November 2011.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!