Whispering-gallery resonator generates CW fourth-harmonic UV light

Nov. 30, 2011
Ann Arbor, MI--When only 200 mW of IR light is coupled into a millimeter-scale whispering gallery resonator made of lithium niobate, it can produce cascaded-harmonic generation up to the fourth harmonic, serving as a compact, low-power source of UV light.

Ann Arbor, MI--When only 200 mW of IR light is coupled into a millimeter-scale whispering gallery resonator made of lithium niobate, it can produce cascaded-harmonic generation up to the fourth harmonic, serving as a compact, low-power source of UV light.1 The device, developed by researchers at the University of Michigan, could become part of future microscopes, information-storage systems, and chemical-analysis instruments.

The research was led by Mona Jarrahi and Tal Carmon, assistant professors in the Department of Electrical Engineering and Computer Science. The experiment was performed by Jeremy Moore and Matthew Tomes, both graduate students in the same department.

The resonator takes its IR input from relatively cheap telecommunications-compatible lasers. "We optimized the structure to achieve high gain over a broad range of optical wavelengths," says Jarrahi. "This allows us to make low-cost, wavelength-tunable ultraviolet sources using low IR power levels."

Lasers get progressively more difficult to generate and more inefficient, as engineers aim for shorter wavelengths, say the researchers. "As we go from green to blue, the efficiency of the laser goes down. Going to UV lasers is even harder," notes Jarrahi. "This principle was first suggested by Einstein and is the reason why green laser pointers do not actually contain a green laser. It is actually a red laser and its wavelength is divided by two to become green light."

The nonlinear-crystal resonator has variable poling and a resonator quality (Q) factor of 107.

REFERENCE:

1. Jeremy Moore et al., Optics Express, Vol. 19, No. 24, p. 24139 (2011).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!