Cell-phone-based iris-recognition system aimed at immunization programs
Eldin Lim Wee Chuan receives the Hutchinson Award for the overall best paper on an image-reconstruction algorithm presented at the 2010 SECAU Security Congress. (Image: NUS) |
Singapore--A research team at the National University of Singapore (NUS) is developing a low-cost cell-phone application that can be used to identify individuals through iris recognition; the project is supported by a US$100,000 Grand Challenges Explorations grant from the Bill & Melinda Gates Foundation.
"The grant will fund our research in developing a low cost, cell phone-based biometric identification algorithm that is based on visible-wavelength imaging of the human iris," says project leader Eldin Lim Wee Chuan. "This algorithm will be in the form of a simple program code that can be installed on typical cell phones." He adds that the program code will convert each iris image into a simple mathematical equation that can be stored efficiently in a database and later retrieved for comparison and identification purposes.
When developed, the application can be used to administer and track immunization programs in healthcare settings, which will be particularly helpful in developing countries. Administrators will simply need to capture images of the iris of each individual to obtain complete identification information and medical records of the respective person. This will allow accurate monitoring of vaccination coverage over large geographical areas, as well as rapid determination of individual vaccination status and accurate recording of vaccine administration.
To enhance the accuracy of the iris-recognition system, the NUS team intends to rely on visible-wavelength (VW) imaging technology instead of the more common near-infrared (NIR) imaging, which has the drawback of pigment melanin information loss. The team also plans to apply an image reconstruction algorithm that they have earlier developed to prove the possibility of accurate representation of real human iris images obtained via VW imaging in the form of mathematical equations.