Photosynthetic molecule plus semiconductor make efficient biophotovoltaics

Feb. 4, 2012
Knoxville, TN--Barry Bruce and colleagues at the University of Tennessee, Knoxville have created photovoltaic cells containing a nanostructured semiconductor on which a photosynthetic pigment/protein (photosystem-I, or PS-I) has self-assembled.

Knoxville, TN--Barry Bruce and colleagues at the University of Tennessee, Knoxville have created photovoltaic cells containing a nanostructured semiconductor on which a photosynthetic pigment/protein (photosystem-I, or PS-I) has self-assembled.1 The device has an open-circuit voltage of 0.5 V, an electrical power density of 81 µW/cm2 and a photocurrent density of 362 µA/cm2 -- a current density more than 10,000 times higher than any previous biophotovoltaic device based on PS-I.

The researchers collaborated with others from the Massachusetts Institute of Technology (Cambridge, MA) and Ecole Polytechnique Federale (Lausanne, Switzerland). “As opposed to conventional photovoltaic solar power systems, we are using renewable biological materials rather than toxic chemicals to generate energy," says Bruce. "Likewise, our system will require less time, land, water and input of fossil fuels to produce energy than most biofuels.”

PS-I bioengineered for the purpose

The PS-I is extracted from blue-green algae, then bioengineered to specifically interact with nanostructured conductive zinc oxide so that, when illuminated, the process of photosynthesis produces electricity. The approach is simple enough that it can be replicated in most labs, allowing others around the world to work toward further optimization.

The mechanism is orders of magnitude more efficient than earlier work done by Bruce for producing bioelectricity thanks to the interfacing of PS-I with the large surface provided by the nanostructured conductive zinc oxide; however it still needs to improve manifold to become useful. Still, the researchers are optimistic and expect rapid progress.

Andreas Mershin, a research scientist at MIT, conceptualized and created the nanoscale wires and platform. He credits his design to observing the way needles on pine trees are placed to maximize exposure to sunlight.

Mohammad Khaja Nazeeruddin in the lab of Michael Graetzel, a professor at the Ecole Polytechnique Federale in Lausanne, Switzerland, did the complex testing needed to determine that the new mechanism actually performed as expected. Graetzel is a pioneer in energy and electron transfer reactions and their application in solar energy conversion.

Michael Vaughn, once an undergraduate in Bruce’s lab and now a National Science Foundation predoctoral fellow at Arizona State University, also collaborated on the paper.

Bruce’s work is funded by the Emerging Frontiers Program at the National Science Foundation.

REFERENCE:

1. Andreas Mershin et al., Nature: Scientific Reports, accepted 05 Jan. 2012, published 02 Feb. 2012; doi:10.1038/srep00234

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!