Astronomers unveil first Large Binocular Telescope findings

March 15, 2012
Tucson, AZ--Today, astronomers at the Large Binocular Telescope (LBT) released the first series of scientific results from the LBT, including images of extrasolar planets.
Four young stars in the Orion Trapezium cluster 1,350 light-years away are imaged by the LBT. This is the best image ever taken of these stars, which are all tightly located within 1 arcsecond of each other. By comparing this 2.16 micron infrared image to past images of this group over the last 15 years, astronomers can now see the motion of each star with respect to the others. The movements show that the stars in the mini-cluster were born together but will likely disperse as the stars age and interact with each other. (Image: LBT Observatory)
Tucson, AZ--Today, astronomers at the Large Binocular Telescope (LBT) released the first series of scientific results from the LBT, including images of extrasolar planets. The LBT has two 8.4 m borosilicate glass honeycomb primary mirrors spaced apart 14.4 m center-to-center, allowing the IR telescope to achieve the diffraction-limited imaging of a single mirror with a 22.8 m aperture. Adaptive-optics secondary mirrors correct for atmospheric turbulence. The LBT is located on Mt. Graham in southeastern Arizona. “With this unrivaled new technology, we can now probe the close-in environments of nearby stars with a clarity that was previously not possible,” said Richard Green, director of the LBT. “We expect these to be the first of many amazing new discoveries as we are now able to observe in unique detail the formation of stars and their systems of planets.”

The HR8799 planetary system is seen in two different IR wavelengths -- on the left, in the H band (1.65 microns); and on the right, in a narrow band centered on 3.3 microns which is sensitive to absorption by methane. All four planets are visible. This is the first time the innermost planet, HR8799e, has been imaged at either wavelength. The scale line spans 1 arcsecond. (Image: LBT Observatory) Source: http://www.lbto.org/Large%20Binocular%20Telescope%20brings%20the%20Universe%20into%20Sharper%20Focus.htm

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!