U. of Sydney researchers unveil mode-locked laser based on microcavity resonator

April 5, 2012
Sydney, Australia--A group at the University of Sydney and its international collaborators has created the first mode-locked laser with a microring cavity as its resonator.

Sydney, Australia--A group at the University of Sydney and its international collaborators has created the first mode-locked laser with a microring resonator as its cavity.1 The laser, which emits pulses at rates as high as 200 GHz with a spectral linewidth well under 130 kHz, operates via a new form of mode-locking that the researchers call "filter-driven four-wave mixing."

The team also includes researchers from INRS-EMT (Varennes Québec, Canada), IPCF-CNR, UOS Roma, and ISC-CNR UOS Montelibretti, ( Rome, Italy), Infinera (Sunnyvale, CA), and the City University of Hong Kong.

CMOS compatible

One great advantage of some integrated photonics is that they are CMOS-compatible, meaning that they can be fabricated using the same inexpensive, large-scale processes used to fabricate computer chips. The U. of Sydney laser falls into this category.

The microring laser's cavity modes are phase-locked, which, via the resulting frequency combs, could lead to new optical clocks for metrology, integrated photonics, and communications.

REFERENCE:

1. M. Peccianti et al., Nature Communications 4, article no. 765, April 3, 2012.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!