U. of Sydney researchers unveil mode-locked laser based on microcavity resonator

April 5, 2012
Sydney, Australia--A group at the University of Sydney and its international collaborators has created the first mode-locked laser with a microring cavity as its resonator.

Sydney, Australia--A group at the University of Sydney and its international collaborators has created the first mode-locked laser with a microring resonator as its cavity.1 The laser, which emits pulses at rates as high as 200 GHz with a spectral linewidth well under 130 kHz, operates via a new form of mode-locking that the researchers call "filter-driven four-wave mixing."

The team also includes researchers from INRS-EMT (Varennes Québec, Canada), IPCF-CNR, UOS Roma, and ISC-CNR UOS Montelibretti, ( Rome, Italy), Infinera (Sunnyvale, CA), and the City University of Hong Kong.

CMOS compatible

One great advantage of some integrated photonics is that they are CMOS-compatible, meaning that they can be fabricated using the same inexpensive, large-scale processes used to fabricate computer chips. The U. of Sydney laser falls into this category.

The microring laser's cavity modes are phase-locked, which, via the resulting frequency combs, could lead to new optical clocks for metrology, integrated photonics, and communications.

REFERENCE:

1. M. Peccianti et al., Nature Communications 4, article no. 765, April 3, 2012.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!