Quantum information record achieved using nano-engineered synthetic diamond
Ascot, England--Synthetic diamond manufacturer Element Six, working in partnership with academics at Harvard University (Cambridge, MA), the California Institute of Technology (Pasadena, CA), and the Max-Planck-Institut für Quantenoptik (Garching, Germany) used its Element Six single-crystal synthetic diamond grown by nano-engineered chemical vapor deposition (CVD) to demonstrate the capability of quantum-bit memory to exceed one second at room temperature.
This study demonstrated the ability of synthetic diamond to provide the read-out of a quantum bit which had preserved its spin polarization for several minutes and its memory coherence for over a second. The team says this is the first time that such long memory times have been reported for a material at room temperature, giving synthetic diamond a significant advantage over rival materials and technologies which require complex infrastructure that typically necessitates cryogenic cooling.
The synthetic diamond technical work was completed by the Element Six synthetic diamond R&D team based at Ascot in the UK who developed novel processes for growing synthetic diamond using CVD. Steve Coe, Element Six group innovation director, said, "The field of synthetic diamond science is moving very quickly and is requiring Element Six to develop synthesis processes with impurity control at the level of parts per trillion—real nano-engineering control of CVD diamond synthesis. We have been working closely with Professor Lukin's team in Harvard for three years—this result published in Science is an example of how successful this collaboration has been."
Professor Mikhail Lukin of Harvard University's Department of Physics said, "Element Six's unique and engineered synthetic diamond material has been at the heart of these important developments. The demonstration of a single qubit quantum memory with seconds of storage time at room temperature is a very exciting development, which combines the four key requirements of initialisation, memory, control and measurement. These findings might one day lead to novel quantum communication and computation technologies, but in the nearer term may enable a range of novel and disruptive quantum sensor technologies, such as those being targeted to image magnetic fields on the nano-scale for use in imaging chemical and biological processes."
The findings represent the latest developments in quantum information processing, which involves manipulating individual atomic sized impurities in synthetic diamond and exploiting the quantum property spin of an individual electron, which can be thought of classically as a bar magnet having two states: up (1) and down (0). However, in the quantum mechanical description (physics of the very small), this quantum spin (qubit) can be both 0 and 1 simultaneously. It is this property that provides a framework for quantum computing, but also for more immediate applications such as novel magnetic sensing technologies.
Element Six is part of the De Beers Family of Companies and is co-owned by Umicore, the Belgian materials group.
Gail Overton | Senior Editor (2004-2020)
Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.