Optical absorption imaging shows shadow of single atom in visible light

July 6, 2012
Brisbane, Australia--Scientists at Griffith University have captured images of the shadow cast by a single ytterbium atom in near-UV (369.5 nm) light.
A shadow is cast by a single ytterbium atom placed in a 4.8 μm focused spot of light at 369.5 nm. (Image: Griffith University)


Brisbane, Australia--Scientists at Griffith University have captured images of the shadow cast by a single ytterbium atom in near-UV (369.5 nm) light. Because the characteristics of such a shadow can also easily be calculated, the technique is an effective way to test the limits of absorption imaging.

"We have reached the extreme limit of microscopy; you cannot see anything smaller than an atom using visible light," says Dave Kielpinski of Griffith University's Centre for Quantum Dynamics. "We wanted to investigate how few atoms are required to cast a shadow and we proved it takes just one." The results were published this week in Nature Communications.

The atom is ionized and held in a radio-frequency trap. The resulting image had a contrast of 3.1% -- matching theoretical calculations. Kielpinski notes that if the frequency of the light shone on the atom is changed by just one part in a billion, the image can no longer be seen.

There are potential follow-on benefits for biomicroscopy. "Because we are able to predict how dark a single atom should be, as in how much light it should absorb in forming a shadow, we can measure if the microscope is achieving the maximum contrast allowed by physics," says Erik Streed, a member of the research team. "This is important if you want to look at very small and fragile biological samples such as DNA strands, where exposure to too much UV light or x-rays will harm the material. We can now predict how much light is needed to observe processes within cells, under optimum microscopy conditions, without crossing the threshold and destroying them."

Source: http://www3.griffith.edu.au/03/ertiki/tiki-read_article.php?articleId=37742

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!