International consortium to ramp up production of nanopatterned antireflective plastic films

Aug. 3, 2012
Singapore--Scientists from A*STAR’s Institute of Materials Research and Engineering (IMRE) will partner with companies to develop, prototype, and conduct pilot large-scale manufacturing of nanoimprinted patterned plastic films having low reflectivity over large angles.

Singapore--Scientists from A*STAR’s Institute of Materials Research and Engineering (IMRE) will partner with companies to develop, prototype, and conduct pilot large-scale manufacturing of nanoimprinted patterned plastic films having low reflectivity over large angles. The roll-to-roll process has a potentially lower cost than current production methods.

IMRE and its Industrial Consortium On Nanoimprint (ICON) partner companies are aiming to produce two types of patterned nanoimprinted plastic films. Potential applications of such mass-produced anti-reflective films are in the mobile device and tablet markets; the second type of film, a self-cleaning plastic, can be applied to surfaces such as building walls.

IMRE and five companiesInnox Higa Singapore Pte Ltd., Micro Resist Technology GmbH, NTT Advanced Technology, SABIC Innovative Plastics, and Solves Innovative Technologywill work together to develop the materials and scale up production of the films.

The partners are developing tougher resins for the nanostructures that will be patterned onto the plastics via IMRE’s nanopatterning process. The process will be scaled up using UV roll-to-roll nanoimprinters.

"We are a company that specializes in photoresists and polymers for micro and nanolithography," says Marko Vogler of Micro Resist Technology GmbH. "Within the ICON project, we will provide tailor-made polymer materials for nanostructured functional films. It is a unique opportunity for us to adapt materials specifically for roll-to-roll processes as well as for 'hard' industrial requirements which cannot be achieved by today’s off-the-shelf materials."

The pilot manufacturing project will last a year, after which the consortium will further develop and market the technology.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!