Electrical signals dictate optical properties of metamaterial

March 19, 2013
Southampton, England--Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created a metamaterial with optical properties that can be controlled by electric signals.

Southampton, England--Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created a metamaterial with optical properties that can be controlled by electric signals.1

The metamaterial contains nanoscale parts, called plasmonic metamolecules, that are supported by nanosized strings of silicon nitride. Applying an electric field of a few volts allows the strings to be driven in sync at megahertz frequencies; the result is a reconfiguration of the metamolecules, which changes the transmission and reflection spectra of the metamaterial.

"We have found a fast and reliable way of coordinating the motion of thousands of metamaterial building blocks," says Eric Plum, Research Lecturer at the ORC. "We shift them by distances smaller than the diameter of a human hair. These minute rearrangements are sufficient to radically change the transmission and reflection characteristics of the metamaterial. We do this by engaging the same force that sticks a small piece of paper to a comb after brushing. In essence, we dictate the movement of metamaterial building blocks with electrical signals, and we can do this very fast."

Metamaterials research has grown rapidly in the past decade. The University's Centre for Photonic Metamaterials is supported by the Engineering and Physical Sciences Research Council and is at the forefront of this development.

REFERENCE:

1. J. Y. Ou et al., Nature Nanotechnology (2013) http://dx.doi.org/10.1038/NNANO.2013.25

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!