Light control in semiconductor could lead to optical transistor

April 10, 2013
Montreal, QC, Canada--At McGill University, Ph.D. candidate Jonathan Saari, professor Patanjali Kambhampati, and colleagues have shown that all-optical modulation and basic Boolean logic functionality (key steps in the processing and generation of signals) can be achieved by using input laser pulses to manipulate the quantum-mechanical state of a semiconductor quantum dot (QD).

Montreal, QC, Canada--At McGill University, Ph.D. candidate Jonathan Saari, professor Patanjali Kambhampati, and colleagues have shown that all-optical modulation and basic Boolean logic functionality (key steps in the processing and generation of signals) can be achieved by using input laser pulses to manipulate the quantum-mechanical state of a semiconductor quantum dot (QD).1 Modulation rates near 1 THz were achieved.

In the experiment, femtosecond pulse sequences were used to control multiexciton populations, which modulated the resulting stimulated light emission at high speed. This is the optical analog of an electronic transistor, in which a small amount of input current influences a larger amount of current to turn on and off at high speeds (although normally in the gigahertz range--far from the terahertz range possible with optical transistors).

The researchers created two optically driven devices: and AND gate and an inverter.

"Our findings show that these nanocrystals can form a completely new platform for optical logic," says Saari. "We're still at the nascent stages, but this could mark a significant step toward optical transistors."

"These results demonstrate the proof of the concept," Kambhampati says. "Now we are working to extend these results to integrated devices, and to generate more complex gates in hopes of making a true optical transistor."

The findings build on a 2009 paper by Kambhampati's research group in Physical Review Letters. That work revealed previously unobserved light-amplification properties unique to QDs.

REFERENCE:

1. Jonathan I. Saari et al., Nano Letters, 13(2), p.722 (2013).


Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!