Light control in semiconductor could lead to optical transistor

April 10, 2013
Montreal, QC, Canada--At McGill University, Ph.D. candidate Jonathan Saari, professor Patanjali Kambhampati, and colleagues have shown that all-optical modulation and basic Boolean logic functionality (key steps in the processing and generation of signals) can be achieved by using input laser pulses to manipulate the quantum-mechanical state of a semiconductor quantum dot (QD).

Montreal, QC, Canada--At McGill University, Ph.D. candidate Jonathan Saari, professor Patanjali Kambhampati, and colleagues have shown that all-optical modulation and basic Boolean logic functionality (key steps in the processing and generation of signals) can be achieved by using input laser pulses to manipulate the quantum-mechanical state of a semiconductor quantum dot (QD).1 Modulation rates near 1 THz were achieved.

In the experiment, femtosecond pulse sequences were used to control multiexciton populations, which modulated the resulting stimulated light emission at high speed. This is the optical analog of an electronic transistor, in which a small amount of input current influences a larger amount of current to turn on and off at high speeds (although normally in the gigahertz range--far from the terahertz range possible with optical transistors).

The researchers created two optically driven devices: and AND gate and an inverter.

"Our findings show that these nanocrystals can form a completely new platform for optical logic," says Saari. "We're still at the nascent stages, but this could mark a significant step toward optical transistors."

"These results demonstrate the proof of the concept," Kambhampati says. "Now we are working to extend these results to integrated devices, and to generate more complex gates in hopes of making a true optical transistor."

The findings build on a 2009 paper by Kambhampati's research group in Physical Review Letters. That work revealed previously unobserved light-amplification properties unique to QDs.

REFERENCE:

1. Jonathan I. Saari et al., Nano Letters, 13(2), p.722 (2013).


Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!