UT Austin laser-based tabletop particle accelerator reaches major milestone

June 20, 2013
Austin, TX--Physicists at The University of Texas at Austin (UT Austin) have built a tabletop particle accelerator that now can accelerate about half a billion electrons to 2 GeV over a distance of about 1 in.

Austin, TX--Physicists at The University of Texas at Austin (UT Austin) have built a tabletop particle accelerator that now can accelerate about half a billion electrons to 2 GeV over a distance of about 1 in.

"Until now that degree of energy and focus has required a conventional accelerator that stretches more than the length of two football fields. It's a downsizing of a factor of approximately 10,000," says Mike Downer, professor of physics at UT Austin's College of Natural Sciences. The conventional accelerators he speaks of cost hundreds of millions of dollars to build.

The results, which were published in Nature Communications, mark a major milestone in the advance toward the day when multi-gigaelectronvolt laser plasma accelerators are standard equipment in research laboratories around the world.

Downer expects 10 GeV accelerators of a few inches in length to be developed within the next few years, and he believes 20 GeV accelerators of similar size could be developed within a decade.

Downer notes that the electrons from the current 2 GeV accelerator can be converted into hard x-rays as bright as those from large-scale facilities. He believes that with further refinement they could even drive an x-ray free electron laser (FEL).

"The x-rays we'll be able to produce are of femtosecond duration, which is the time scale on which molecules vibrate and the fastest chemical reactions take place," says Downer. "They will have the energy and brightness to enable us to see, for example, the atomic structure of single protein molecules in a living sample."

Downer and his colleagues used the Texas Petawatt Laser, which enabled them to use gases that are much less dense than those used in previous experiments.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!