Infrared vision analyzes individual layers of graphene in a stack
Buffalo, NY--A State University of New York (SUNY) University at Buffalo (UB)-led research team has developed a technique for "seeing through" a stack of graphene sheets to identify and describe the properties of each individual sheet—even when the sheets are covering each other up. The method involves shooting a beam of infrared (IR) light at the stack, and measuring how the light wave's direction of oscillation changes as it bounces off the layers within. The collaborators included colleagues from UB and the U.S. Naval Research Laboratory.
When a magnetic field is applied and increased, different types of graphene alter the direction of oscillation, or polarization, in different ways. A graphene layer stacked neatly on top of another will have a different effect on polarization than a graphene layer that is messily stacked. "By measuring the polarization of reflected light from graphene in a magnetic field and using new analysis techniques, we have developed an ultrasensitive fingerprinting tool that is capable of identifying and characterizing different graphene multilayers," said John Cerne, UB associate professor of physics, who led the project. The technique allows the researchers to examine dozens of individual layers within a stack.
Graphene, a nanomaterial that consists of a single layer of carbon atoms, has generated huge interest due to its remarkable fundamental properties and technological applications. It is lightweight but also one of the world's strongest materials. So incredible are its characteristics that it garnered a Nobel Prize in Physics in 2010 for two scientists who pioneered its study.
Cerne's new research looks at graphene's electronic properties, which change as sheets of the material are stacked on top of one another. The findings are published in Scientific Reports (http://www.nature.com/srep/2013/131105/srep03143/full/srep03143.html), an online open-access journal produced by the publishers of Nature.
The study showed that absorption and emission patterns change when a magnetic field is applied, which means that scientists can turn the polarization of light on and off either by applying a magnetic field to graphene layers or, more quickly, by applying a voltage that sends electrons flowing through the graphene. "Applying a voltage would allow for fast modulation, which opens up the possibility for new optical devices using graphene for communications, imaging and signal processing," said first author Chase T. Ellis, a former graduate research assistant at UB and current postdoctoral fellow at the Naval Research Laboratory.
SOURCE: SUNY University at Buffalo; http://www.buffalo.edu/news/releases/2013/11/029.html
Gail Overton | Senior Editor (2004-2020)
Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.