Soliton compression in silicon waveguides aimed at on-chip optical communication

Jan. 21, 2014
Sydney, Australia--An international research team has for the first time produced soliton compression in a silicon photonic crystal on-chip.

Sydney, Australia--An international research team has for the first time produced soliton compression in a silicon photonic crystal on-chip.1 The team hails from the University of Sydney; Tecnalia (Zamudio, Spain); Sun Yat-sen University (Guangzhou, China); and the University of York (York, England).

Andrea Blanco-Redondo and Chad Husko from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) at the University of Sydney's School of Physics led the research.

Slow-light effect
In the ideal case, soliton behavior in silicon waveguides would be similar to that of the well-studied types of solitons in an optical fiber; however, until now, however the composition and properties of silicon waveguides prevented the observation of solitons in silicon photonic crystals.

The researchers were able to compress 3.7 ps pulses of only 10 pJ energy to a 1.6 ps duration; the results were achieved using a dispersion-configured slow-light photonic-crystal waveguide.

In contrast to kilometer-scale fibers, the soliton propagation in the silicon waveguides occurs at the micron scale, due to the slow-light effect. The results could lead to miniaturization of optical components featuring soliton-based functionality in integrated silicon photonic chips.

"Our experiments will inform the ongoing push to develop optical circuits in CMOS-compatible materials such as silicon for on-chip communication, similar to the community's research in glass fiber in the 1980s," says Husko.

REFERENCE:

1. A. Blanco-Redondo et al., Nature Communications 5, 15 January 2014; doi: 10.1038/ncomms4160

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!