Lens developed for hard x-ray nanoprobe beamline achieves 11 nm focal spot

Feb. 26, 2014
Upton, NY--At the National Synchrotron Light Source II (NSLS-II) now under construction at Brookhaven National Laboratory (BNL), 12 keV x-rays produced by the Hard X-ray Nanoprobe beamline (HXN) have now been focused down to an 11 nm spot size.

Upton, NY--At the National Synchrotron Light Source II (NSLS-II) now under construction at Brookhaven National Laboratory (BNL), 12 keV x-rays produced by the Hard X-ray Nanoprobe beamline (HXN) have now been focused down to an 11 nm spot size.1 The BNL researchers used a novel x-ray optic called a multilayer Laue lens (MLL), which consists of nested approximately cylindrical layers that focus hard x-rays via grazing incidence.

The researchers analyzed their MLL's focusing performance using a technique known as ptychography. "With ptychography, we can visualize how the x-rays are traveling from the lens to the focus and to an arbitrary point in the optical path. Therefore, we do not have to use conventional knife-edge scans to quantify lens aberrations," says Xiaojing Huang, one of the researchers. The ptychography analysis quantified the lens aberrations at a 0.3 wave period, very close to a quarter wave period. This represents a rigorous threshold value for "diffraction-limited" focusing.

The NSLS-II will enable scientists to image structures at ever-smaller spatial scales. HXN's long-range goal is to achieve a resolution of 1 nm. Hard x-rays exhibit excellent structural, elemental and chemical sensitivity and are particularly suited for in-situ studies that are challenging for electrons.

The Brookhaven-fabricated MLL has a 43-micron aperture (the largest yet reported MLL size). It accepts substantially more x-rays than earlier MLLs and offers a significantly larger working distance, needed for in-situ experiments. It also contains a total of 6,510 layers, with thicknesses ranging from 4 to 21 nm.

Source: http://www.bnl.gov/newsroom/news.php?a=24676

REFERENCE:

1. Xiaojing Huang et al., Scientific Reports 3, Article number: 3562. DOI: 10.1038/srep03562

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!