LIBS used to detect carcinogenic chromium in synthetic hair dye

March 13, 2014
A group at King Fahd University of Petroleum and Minerals (Dhahran, Saudi Arabia) has created a laser-induced-breakdown spectroscopic (LIBS) instrument that can be used to measure the level of chromium in synthetic hair dyes

A group at King Fahd University of Petroleum and Minerals (Dhahran, Saudi Arabia) has created a laser-induced-breakdown spectroscopic (LIBS) instrument that can be used to measure the level of chromium in synthetic hair dyes.1

Good reasons for measuring hair dye
The instrument is potentially important because chromium is carcinogenic (as well as damaging to the kidney and liver); the safe permissible limit for chromium in hair dye is 1 part per million (ppm). A conventional detection technique, inductively coupled plasma mass spectrometry (ICPMS), requires very large and complex instrumentation, while LIBS is potentially smaller and simpler.

The 266-nm laser source delivers 8 ns pulses with a maximum pulse energy of 50 mJ at a 20 Hz repetition rate; a fiber-optic cable terminating in a lens collects the light from the resulting plasma and sends it to a grating spectrometer that uses an intensified charge coupled device (iCCD) array for sensing.

Synthetic hair dyes are in powder form; when struck by a laser pulse, they quickly disperse and blow away. This led the researchers to create more-easily analyzed pellets out of hair-dye powder mixed with a potassium bromide (KBr) binder.

After first calibrating the system using pellet samples having chromium concentrations of 40, 60, 80, and 100 ppm, the researchers moved on to measuring the chromium concentrations in three different brands of hair dye purchased in Saudi Arabia.

Success for LIBS, fail for the hair dyes
With an ICPMS system providing reference measurements, the researchers measured concentrations of 11, 9, and 5 ppm respectively using their LIBS apparatus, compared to 9.8, 8.1, and 4.6 ppm with the ICPMS. The minimum detectable level of chromium using LIBS was 1.2 ppm -- approximately the same as the 1 ppm safe level for hair dye.

REFERENCE:

1. M. A. Gondal et al., Applied Optics, Vol. 53, No. 8, p. 1636, 10 March 2014.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!