MIT to build $350 million building for nanotechnology research

April 29, 2014
The Massachusetts Institute of Technology (MIT; Cambridge, MA) will construct a new 200,000-square-foot building, called “MIT.nano,” to be finished by 2018; at the center of the MIT campus, MIT.nano will house state-of-the-art cleanroom, imaging, and prototyping facilities supporting research on nanoscale materials and processes.

The Massachusetts Institute of Technology (MIT; Cambridge, MA) will construct a new 200,000-square-foot building, called “MIT.nano,” to be finished by 2018; at the center of the MIT campus, MIT.nano will house state-of-the-art cleanroom, imaging, and prototyping facilities supporting research on nanoscale materials and processes.

An estimated 2000 MIT researchers may ultimately make use of the building, says electrical engineering professor Vladimir Bulović, faculty lead on the MIT.nano project and associate dean for innovation in the School of Engineering. Research will occur in fields that include energy, health, life sciences, quantum sciences, electronics, and manufacturing.

EMI- and vibration-isolated space

MIT.nano will house two interconnected floors of cleanroom laboratories containing fabrication spaces and materials growth laboratories. The building will also include a floor optimized for low vibration and minimal electromagnetic interference (EMI), dedicated to advanced imaging technologies. The facility will also include teaching and research space, known as a computer-aided visualization environment (CAVE), allowing high-resolution views of nanoscale features.

MIT.nano will use heat-recovery systems on the building’s exhaust vents. The building will also be able to sense the local cleanroom environment and adjust the need for air exchange, reducing MIT.nano’s energy consumption.

An estimated one-quarter of MIT’s graduate students and 20% of its researchers will make use of the facility, says Bulović.

Source: http://newsoffice.mit.edu/2014/new-building-will-be-hub-for-nanoscale-research-0429

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!