Wood-derived cellulose nanocrystals form iridescent film for textile and security applications

June 13, 2014
Researchers at the University of Cambridge (Cambridge, England) have extracted cellulose nanocrystals from wood pulp, then prompted the nanocrystals to spontaneously self-assemble into chiral (spiral-shaped) nanostructured layers that form optical multilayer thin-film reflectors.

An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates. Credit: Silvia Vignolini

Researchers at the University of Cambridge (Cambridge, England) have extracted cellulose nanocrystals from wood pulp, then prompted the nanocrystals to spontaneously self-assemble into chiral (spiral-shaped) nanostructured layers that form optical multilayer thin-film reflectors.1 The reflected spectral band of the film, and thus its color, can be tailored by varying the humidity conditions during self-assembly.

The result is a material that could replace toxic pigments used in the textile and security industries.

Biomimetic film
The material mimics some biological substances: for example, in plants such as Pollia condensata, striking iridescent and metallic colors are produced by cellulose fibers arranged in chiral stacks.

To make the films, the researchers suspended the extracted cellulose nanocrystals in water; the rod-shaped nanocrystals spontaneously assembles into nanostructured chiral layers as the water evaporates. The researchers used a spectroscopic setup to measure the bandwidth of the spectral reflection and thus the amount of disorder in the fabricated samples.

"Cellulose is a well-known, cheap material used in the paper and pharmaceutical industries, and is also used in filters and insulating materials; however, its potential is not yet fully exploited," said Ahu Gumrah Dumanli of Cambridge University's Cavendish Laboratory. "It is important to understand the materials fully if we want to use them for application in optical devices."

Source: http://www.cam.ac.uk/research/news/taking-inspiration-from-natures-brightest-colours

REFERENCE:

Dumanli, A. G. et al., Advanced Optical Materials (2014); doi: 10.1002/adom.201400112

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!