Wood-derived cellulose nanocrystals form iridescent film for textile and security applications

June 13, 2014
Researchers at the University of Cambridge (Cambridge, England) have extracted cellulose nanocrystals from wood pulp, then prompted the nanocrystals to spontaneously self-assemble into chiral (spiral-shaped) nanostructured layers that form optical multilayer thin-film reflectors.

An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates. Credit: Silvia Vignolini

Researchers at the University of Cambridge (Cambridge, England) have extracted cellulose nanocrystals from wood pulp, then prompted the nanocrystals to spontaneously self-assemble into chiral (spiral-shaped) nanostructured layers that form optical multilayer thin-film reflectors.1 The reflected spectral band of the film, and thus its color, can be tailored by varying the humidity conditions during self-assembly.

The result is a material that could replace toxic pigments used in the textile and security industries.

Biomimetic film
The material mimics some biological substances: for example, in plants such as Pollia condensata, striking iridescent and metallic colors are produced by cellulose fibers arranged in chiral stacks.

To make the films, the researchers suspended the extracted cellulose nanocrystals in water; the rod-shaped nanocrystals spontaneously assembles into nanostructured chiral layers as the water evaporates. The researchers used a spectroscopic setup to measure the bandwidth of the spectral reflection and thus the amount of disorder in the fabricated samples.

"Cellulose is a well-known, cheap material used in the paper and pharmaceutical industries, and is also used in filters and insulating materials; however, its potential is not yet fully exploited," said Ahu Gumrah Dumanli of Cambridge University's Cavendish Laboratory. "It is important to understand the materials fully if we want to use them for application in optical devices."

Source: http://www.cam.ac.uk/research/news/taking-inspiration-from-natures-brightest-colours

REFERENCE:

Dumanli, A. G. et al., Advanced Optical Materials (2014); doi: 10.1002/adom.201400112

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!