'Solid' light to serve as specialized quantum computer

Sept. 9, 2014
As part of an effort to develop exotic materials such as room-temperature superconductors, researchers at Princeton University (Princeton, NJ) and ETH Zurich (Zurich, Switzerland) have locked together photons so that they become fixed in place.

As part of an effort to develop exotic materials such as room-temperature superconductors, researchers at Princeton University (Princeton, NJ) and ETH Zurich (Zurich, Switzerland) have locked together photons so that they become fixed in place.1 Their goal is to build a physical system that directly simulates the behavior of certain quantum materials; the physical system would in essence be a specialized quantum computer (as opposed to a general-purpose quantum computer, which is much more difficult).

To build their machine, the researchers created a structure made of superconducting materials that contains 100 billion atoms engineered to act as a single "artificial atom." They placed the artificial atom close to a superconducting wire containing photons.

By the rules of quantum mechanics, the photons on the wire can become quantum-mechanically entangled with the artificial atom. Normally photons do not interact with each other, but in this system the researchers are able to create new behavior in which the photons begin to interact with each other in some ways like particles.

"In one mode of operation, light sloshes back and forth like a liquid; in the other, it freezes," says Darius Sadri, a Princeton postdoctoral researcher.

The current device is relatively small, with only two sites where an artificial atom is paired with a superconducting wire. But the researchers say that by expanding the device and the number of interactions, they can increase their ability to simulate more complex systems -- growing from the simulation of a single molecule to that of an entire material. In the future, the team plans to build devices with hundreds of sites with which they hope to observe exotic phases of light such as superfluids and insulators.

Source: http://www.princeton.edu/engineering/news/archive/?id=13459

REFERENCE:

1. J. Raftery et al., Phys. Rev. X (2014); doi: 10.1103/PhysRevX.4.031043

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!