Whispering-gallery Raman laser sensors detect individual nanoparticles

Sept. 4, 2014
A team of researchers at Washington University in St. Louis (St. Louis, MO), led by Lan Yang, the Das Family Career Development Associate Professor in Electrical & Systems Engineering, and their collaborators at Tsinghua University (Beijing, China) has developed a new sensor that can detect and count nanoparticles, at sizes as small as 10 nm, one at a time.

A team of researchers at Washington University in St. Louis (St. Louis, MO), led by Lan Yang, the Das Family Career Development Associate Professor in Electrical & Systems Engineering, and collaborators at Tsinghua University (Beijing, China) have developed a new sensor that can detect and count nanoparticles, at sizes as small as 10 nm, one at a time.1 The researchers say the sensor could potentially detect much smaller particles, viruses, and small molecules.

In 2011, the Washington University in St. Louis researchers described a similar device, except that it required doping with erbium. The new device requires no doping.

The device is an array of self-referenced and self-heterodyned whispering-gallery Raman microlasers created in an undoped silicon dioxide chip. A pump laser generates a single Raman lasing mode inside the silica resonators. Upon landing of a nanoparticle on the resonator, Raman laser light circulating inside the resonator undergoes mode splitting, leading to two new lasing modes in different colors. Monitoring the changes in the color difference (frequency difference) enables detecting and measuring of nanoparticles with single-particle resolution.

"[The undoped Raman-laser approach] gives us the advantage of using the same dopant-free sensor at different sensing environments by tailoring the lasing frequency for the specific environment, for example, at the band where the environment has minimum absorption, and for the properties of the targeted nanoparticles by just changing the wavelength of the pump laser," says Sahin Kaya Ozdemir, a research scientist in Yang's group and the first author of the paper.

The technology should benefit the electronics, acoustics, biomedical, plasmonics, security, and metamaterials fields.

In addition to the demonstration of Raman microlasers for particle sensing, the team says their work shows the possibility of using intrinsic gain mechanisms, such as Raman and parametric gain, instead of optical dyes, rare-earth ions, or quantum dots for loss compensation in optical and plasmonic systems where dissipation hinders progress and limits applications.

Source: http://news.wustl.edu/news/Pages/27295.aspx

REFERENCE:

Ozdemir S. et al., Proceedings of the National Academy of Sciences, online Early Edition, Sept. 1, 2014; doi: 10.1073/pnas.1408283111

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!