Theranostic fluorescent nanoparticles identify and destroy ovarian cancer cells

Oct. 15, 2014
Theranostic research that describes a fluorescence technique for identifying and destroying ovarian cancer cells was selected as Editor's Choice for the September 2014 issue of Lasers in Surgery and Medicine (LSM).

Theranostic research from the University of California, Riverside and MD Anderson Cancer Center at the University of Texas (Houston, TX) that describes a fluorescence technique for identifying and destroying ovarian cancer cells was selected as Editor’s Choice for the September 2014 issue of Lasers in Surgery and Medicine (LSM).

RELATED ARTICLE: Medical diagnostics and therapy combine: Theranostics arrives

The manuscript (see http://www.aslms.org/professional/documents/September2014EditorsChoiceManuscript.pdf) entitled “Functionalized Polymeric Nanoparticles Loaded with Indocyanine Green as Theranostic Materials for Targeted Molecular Near Infrared Fluorescence Imaging and Photothermal Destruction of Ovarian Cancer Cells” was published in LSM, the official journal of the American Society for Laser Medicine and Surgery (ASLMS; Wausau, WI).

The study demonstrates the effectiveness of a nanostructured system for combined near-infrared (NIR) fluorescence imaging of human epidermal growth factor receptor-2 (HER2) over-expression, as a biomarker of ovarian cancer cells, and photothermal destruction of these cells in vitro.

"The use of multi-functional nanoconstructs in detection and treatment of tissue malformations is a very promising and rapidly advancing area of research," said Baharak Bahmani. "Herein, we have reported in-vitro targeting of ovarian cancer cells using Indocyanine Green loaded polymeric nanoparticles functionalized with anti-epidermal growth factor receptor-2 (anti-HER2) antibodies. These multi-functional nanoconstructs were utilized to optically detect ovarian cancer cells followed by laser-based photodestruction of cancer cells. The functionalization procedure described in this manuscript may be implemented as a platform for functionalization of various types of nanoconstructs for detection and therapy of malignant tissue.”

"The biophotonics research group at UC Riverside has engineered an optical nano-scale multi-functional platform composed of a polymeric material doped with indocyanine green, and functionalized with monoclonal antibodies. In collaboration with colleagues at The University of Texas MD Anderson Cancer Center, the investigators demonstrate that this single platform is capable of specific targeting, near infrared molecular imaging, and photothermal destruction of ovarian cancer cells in vitro," said Bahman Anvari.

SOURCE: ASLMS; http://www.aslms.org/professional/documents/September2014EditorsChoiceManuscript.pdf

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!