Simulation shows self-assembly of colloidal icosahedral quasicrystal; can have photonic bandgap

Dec. 23, 2014
Researchers at the University of Michigan (U-M; Ann Arbor, MI) and Argonne National Laboratory (Argonne, IL) have modeled what they call "the most complicated crystal structure ever produced in a computer simulation": an icosahedral quasicrystal whose basic unit can be a nanoparticle or a colloidal particle. Such crystals can be self-assembled from a fluid phase, the simulations show, and could have photonic bandgap properties.

Researchers at the University of Michigan (U-M; Ann Arbor, MI) and Argonne National Laboratory (Argonne, IL) have modeled what they call "the most complicated crystal structure ever produced in a computer simulation": an icosahedral quasicrystal whose basic unit can be a nanoparticle or a colloidal particle. Such crystals can be self-assembled from a fluid phase, the simulations show, and could have photonic bandgap properties.1

The icosahedral symmetry of such crystals is forbidden in a conventional crystal, because icosahedra do not nicely fill space in a periodic manner. But icosahedral quasicrystals are nonperiodic and yet retain long-range order.

"An icosahedral quasicrystal is nature’s way of achieving icosahedral symmetry in the bulk. This is only possible by giving up periodicity, which means order by repetition. The result is a highly complicated structure," says Michael Engel, a U-M researcher.

Icosahedral quasicrystals, commonly found in metal alloys, earned the chemist who discovered them more than 30 years ago a Nobel Prize. But engineers are still searching for efficient ways to make them with other materials.

Due to their high symmetry under rotation, they can have a photonic bandgap. "If icosahedral quasicrystals could be made from nano- and micrometer-sized particles, they could be useful in a variety of applications including communication and display technologies, and even camouflage," said Sharon Glotzer, another U-M researcher.

Source: http://ns.umich.edu/new/releases/22593-world-s-most-complex-crystal-simulated-at-u-michigan

REFERENCE:

1. Michael Engel et al., Nature Materials, published online 08 December 2014; doi:10.1038/nmat4152

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!