Northrop Grumman installs new joule-class laser at Lawrence Livermore National Laboratory

Feb. 26, 2015
The new joule-class laser will be a key component of LLNL's high-repetition-rate advanced petawatt laser system (HAPLS).

Northrop Grumman Cutting Edge Optronics (CEO; St. Charles, MO) has installed and commissioned its new joule-class Gigashot-HETM diode-pumped solid-state (DPSS) laser system at Lawrence Livermore National Laboratory (LLNL; Livermore, CA). The laser will be used as a key component of LLNL's high-repetition-rate advanced petawatt laser system (HAPLS).

The HAPLS laser system is destined for the European Union's Extreme Light Infrastructure (ELI) Beamlines high-intensity laser-science facility currently under construction in the Czech Republic. The injection-seeded, diode-pumped Gigashot-HE laser outputs 2 J of 532 nm energy in each sub-10 ns pulse at 10 Hz with a near-field flat-top beam profile, making it an ideal pump source for one of HAPLS high energy Ti:Sapphire amplifier stages.

10 Hz repetition rate

HAPLS is designed to generate 30 J pulses with a pulse duration shorter than 30 fs, delivering a peak power greater than 1 petawatt (PW) at a repetition rate of 10 Hz. This very high repetition rate is a major advance, says CEO, considering that current petawatt laser systems fire a maximum of once per second.

Generation of high-brightness x-rays and acceleration of charged particles are a few examples of the many uses of such ultrashort, high energy pulses. HAPLS will enable new science discoveries in physics, chemistry, biochemistry, and medicine at the ELI Beamlines facility. ELI Beamlines will ultimately be a users' facility, where the variety and number of planned experiments will require fully automated, reliable, and low-maintenance laser operation, which is made possible through the HAPLS' use of all-diode-pumped laser technology, says CEO.

More than 10 billion shots

The Gigashot-HE consists of four PowerPULSE laser modules: one oscillator, one pre-amplifier, and two power amplifiers, using radially side-pumped Nd:YAG rods ranging in diameter from 3 to 18 mm. Each laser module is pulse-pumped by laser-diode arrays manufactured on-site at CEO's Missouri facility. The arrays have an expected lifetime in excess of 10 billion shots, which equates to more than 30 years of continuous operation at 10 Hz.

Source: http://cuttingedgeoptronics.com/2015/02/05/ceo-laser-installs-joule-class-laser-llnl/

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!