A single quantum dot in a microcavity produces indistinguishable photons for quantum devices

March 8, 2016
With this brighter single-photon source, quantum optical computers may now be slightly less far off.

A new ultrabright source of single photons that is 20 times brighter than commonly used sources, and which emits photons that are 99.5% indistinguishable from one another, has been developed by researchers from the CNRS-LPN Laboratoire de Photonique et de Nanostructures, Université Paris-Saclay (Marcoussis, France), the University of Queensland (Brisbane, Australia), Université Grenoble Alpes (Grenoble, France), CNRS, Institut Néel (Grenoble, France), Université Paris Diderot (Paris, France), and Ecole Polytechnique, Université Paris-Saclay (Palaiseau, France).1

This feat was achieved thanks to the nanometrically precise positioning of a single quantum dot within an optical microcavity. Adding an electrical bias to the device helped reduce the "noise" around the quantum dot, which generally renders photons different from one another.

The results make it possible to conduct quantum computing of unprecedented complexity, a first step toward the creation of optical quantum computers.

Source: http://www.alphagalileo.org/ViewItem.aspx?ItemId=161714&CultureCode=en

REFERENCE:

1. Niccolo Somaschi et al., Nature Photonics (2016); doi:10.1038/Nphoton.2016.23

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!