NSF awards $2 million to develop SiC integrated quantum photonic processor

Aug. 10, 2016
Under a four-year grant, Qiang Lin will lead a photonics system integration research project on quantum information processing.

Under a four-year, $2 million U.S. National Science Foundation (NSF) grant, Qiang Lin, assistant professor of electrical and computer engineering in the Hajim School of Engineering & Applied Sciences, will lead a photonics system integration research project to reduce the complexity and increase the capacity of quantum information processing for secure communication, metrology, sensing, and advanced computing.

The research is expected to result in a new class of device technologies with previously inaccessible attributes and merits that may eventually have profound commercial impact on the industrial sectors. SiC combines excellent linear optical, nonlinear optical, point defect, electrical, mechanical, and thermal characteristics into a single material with mature wafer processing and device fabrication capability, thus representing a promising material system for integrated quantum photonics.

“Our team will build chip-scale integrated silicon carbide quantum photonic processors for high-fidelity and energy-efficient quantum information processing, which interface seamlessly with fiber-optic links for secure communication and distribution of quantum information,” said Lin, principal investigator of the project and director of the University’s Laboratory for Quantum, Nonlinear and Mechanical Photonics.

Co-principal investigators are John Howell, professor of physics and optics, David Awschalom of the University of Chicago, Case Western Reserve University’s Philip Feng, and MIT’s Jurgen Michel. Members of the National Institute of Standards and Technology (NIST), Thomas Gerrits, Sae Woo Nam, and Richard Mirin, are also collaborating on this project.

Research such as this also feeds into the work of the AIM Photonics (American Institute for Manufacturing Photonics) consortium of the U.S. Department of Defense, of which the University of Rochester is a partner.

Source: University of Rochester

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!