Perovskite phosphor boosts data rates for visible-light communication

Aug. 15, 2016
Nanocrystals that help generate white light could help combine lighting and communications systems into one. 

So-called visible-light communication (VLC) using white-light LEDs or laser diodes to transmit data to computers and other devices. The technique makes use of parts of the electromagnetic spectrum that are unregulated and is also potentially more energy-efficient than using radio waves. VLC also offers a way to combine information transmission with illumination and display technologies—for example, using ceiling lights to provide internet connections to laptops.

VLC can also greatly boost data rates in comparison to ordinary Wi-Fi. However, the existing yellow YAG phosphors used with gallium-nitride (GaN)-based blue LEDs to form white-light sources have a relatively slow decay time—much slower than the blue LED itself—reducing the data rate.

Now, researchers at King Abdullah University of Science and Technology (KAUST; Thuwal, Saudi Arabia) have created a nanocrystalline perovskite material that forms white light out of blue light and has a modulation bandwidth of 491 MHz—40 times that of the conventional phosphors.1 With this modulation rate, data could be transmitted at 2 Gbit/s.

Warm white light

The solution-processed cesium lead bromide (CsPbBr3) nanocrystals are roughly 8 nm in size and were combined with a nitride phosphor. When illuminated by blue laser light, the CsPbBr3 emitted green light while the nitride emitted red light. Together, these combined to create a warm white light.

(Another way to increase data rates for communications based on white-light semiconductor sources is to use three separate sources—a red (R), a green (G), and a blue (B)—instead of a single blue source used with phosphors. However, RGB light sources are more expensive than blue + phosphor sources.)

The researchers characterized the optical properties of the material using femtosecond transient spectroscopy. They showed that the optical processes in cesium lead bromide nanocrystals occur on a time-scale of roughly 7 ns.

“The rapid response is partly due to the size of the crystals,” says Osman Bakr, one of the researchers. “Spatial confinement makes it more likely that the electron will recombine with a hole and emit a photon.”

The white light generated using the perovskite nanostructures was of a quality comparable to present LED technology.

“We believe that white light generated using semiconductor lasers will one day replace LED white-light bulbs for energy-efficient lighting,” says Boon Ooi, another of the researchers.

Source: https://discovery.kaust.edu.sa/en/article/258/step-into-the-white-light-for-faster-communication

REFERENCE:

1. Ibrahim Dursun et al., ACS Photonics 3 (2016); doi: 10.1021/acsphotonics.6b00187

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!